
Intro
Tutorial

Remarks
Summary

The Natural Language Toolkit
Montréal-Python 18 (Boat-shaped Benefactress)

Pablo Ariel Duboue

Les Laboratoires Foulab
999 Rue du College

Montreal, H4C 2S3, Quebec

January 31st 2011

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Outline

1 Introduction
Natural Language Processing
Natural Language Toolkit
Python

2 Tutorial: Determining source language of a document
Background
Details
Console

3 Remarks
Natural Language Processing
Frameworks

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

NLP
NLTK
Python

What is Natural Language Processing

Processing language with computers.
Plenty of practical applications (blogs, twitter, phones, etc).
The ultimate AI frontier?

However...
People are good at language, it comes naturally to them
(their mother tongue, that is).
NLP practitioners have a mixture of interest in both
language and mathematics, an unusual combination.
Lots of engineering and tweaking (there must be a better
way!).

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

NLP
NLTK
Python

NLTK

A toolkit, a collection of python packages and objects very
tailored to NLP subtasks.
NLTK is both a tool to introduce newcomers to the state of
the art of NLP practice, plus allow seasoned practitioners
to feel at home within the environment.
Compared to other frameworks, the NLTK has very strong
defaults (e.g., a text is a sequence of words), which can be
changed.
NLTK not only targets NLP practitioners with a computer
science background but it also provides valuable tools for
corpus-based linguists fieldwork.
NLTK blends with Python rather than “being implemented”
in Python.

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

NLP
NLTK
Python

Important facts

NLTK started at University of Pennsylvania, as part of
computational linguistics course.
Available at http://www.nltk.org/.
Source code distributed under the Apache License version
2.0.
There is a 500-page book authored by Bird, Klein and
Loper available via O’Reilly “Natural Language Processing
with Python”, highly recommendable.
The toolkit includes also data in the form of text collections
(many with annotations) and statistical models.

Pablo Duboue NLTK

http://www.nltk.org/

Intro
Tutorial

Remarks
Summary

NLP
NLTK
Python

NLTK and Python

The toolkit tries to get itself out of the day and allows you to
do most things with Python idioms, such as slices and list
comprehensions.
Therefore, a text is list of words and any list of words can
be transformed into a text.
The toolkit design goals (Simplicity, Consistency,
Extensibility and Modularity) go hand in hand with Python
own design.

Faithful to these goals, NLTK refrains from creating its own
classes when Python defaults dictionaries, tuples and lists
suffice.

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

NLP
NLTK
Python

NLTK main packages

Accessing corpora Interfaces to collections of documents and
dictionaries.

String processing Tokenization, sentence detection, stemmers.
Collocation discovery A collocation is a pair of tokens that

occur most often than chance.
Part-of-speech tagging Telling nouns apart from verbs, etc.
Classification General classifiers, based on training material

provided as a Python dictionary.
Chunking Splitting a sentence into coarsed-units

Parsing Full-fledged (syntactic, and others) parsing.
Semantic interpretation Lambda calculus, first-order logic, etc.
Evaluation metrics Precision, recall, etc.
Probability and estimation Frequency distributions, estimators,

etc.
Applications WordNet browser, chatbots.

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

NLP
NLTK
Python

Some examples

For trying, importing everything in nltk.book puts your
python interpreter ready to go.

You might need to download first some data blobs first, by
importing nltk and issuing nltk.download().

You can then ask, for example for words similar based on
their contexts, given a text.

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

NLP
NLTK
Python

NLTK similar words by context

>>> from n l t k . book import ∗
long comment , skipped
>>> moby_dick = tex t1
>>> moby_dick . s i m i l a r (’ poor ’)
Bu i l d i ng word−contex t index . . .
o ld sweet as eager t h a t t h i s a l l own help p e c u l i a r german crazy three
at goodness world wonderfu l f l o a t i n g r i n g simple
>>> inaugural_addresses = tex t4
>>> inaugural_addresses . s i m i l a r (’ poor ’)
Bu i l d i ng word−contex t index . . .
f r ee south du t i es wor ld people a l l p a r t i a l we l fa re b a t t l e se t t l ement
i n t e g r i t y c h i l d r e n issues idea l i sm t a r i f f concerned young recurrence
charge those

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Background
Details
Console

Some background

This topic was suggested by Yannick, as he pointed out the
importance of telling apart English vs. French documents
for Montrealers.
In language identification, there are multiple approaches,
although the two preferred involve using word dictionaries
or distribution of characters tuples (or n-grams).
I prefer character-based methods as they do not require
tokenization (splitting the text into words), which is
language dependent.

Moreover, you can detect the language with very few
characters, and when none of them are a common
dictionary word (Twitter anyone?).

The canonical citation here would be:
Dunning, T. (1994) “Statistical Identification of Language”.
Technical Report MCCS 94-273, New Mexico State
University, 1994.Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Background
Details
Console

The data

For data, we will be using the “European Parliament
Proceedings Parallel Corpus 1996-2009”

Parallel corpus of 11 European languages, aligned
sentence by sentence.
Heavily used in Statistical Machine Translation.
http://www.statmt.org/europarl/
License: “We are not aware of any copyright restrictions of
the material.”

We will be using the first 1,000 sentences from the parallel
corpus French-English.

The full corpus is 176 MB, and goes from 04/1996-10/2009

Pablo Duboue NLTK

http://www.statmt.org/europarl/

Intro
Tutorial

Remarks
Summary

Background
Details
Console

In a nutshell

First, we want to build a statistical model and see if there is
some “signal” in the data until we get the right n for the
n-grams (sequences of n-characters).
Then, we want to select a few n-grams that are highly
discriminatory between English and French.

To do that, we train a classifier based on one feature
(named ‘ngram’) and using all available n-grams.
We then extract the most informative features.

informativeness of a feature (name, val) is equal
to the highest value of P(name = val |label), for
any label, divided by the lowest value of
P(name = val |label), for any label:

maxl1(P(name = val |l1))/minl2(P(name = val |l2))

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Background
Details
Console

In a nutshell (cont.)

Now that we have the features, we train second classifier.
Each feature is now a most informative n-gram, as
computed in the previous step.
In this example, the value for a feature will be ’1’ (just a
binary feature indicating whether the n-gram is present or
not).

An alternative approach is to use how many times the
n-gram actually occurs, but using binary features is more
robust for short texts.

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Background
Details
Console

Console

Python 2 .5 .5 (r255 :77872 , Nov 28 2010 , 16:43:48)
[GCC 4 . 4 . 5] on l i n u x 2
Type " help " , " copy r i gh t " , " c r e d i t s " or " l i cense " for more in fo rma t i on .
>>> import n l t k
>>> en = open (" en . t x t ") . read ()
>>> f r = open (" f r . t x t ") . read ()
>>> for n in range (1 , 5) :
. . . fm_f r= n l t k . model . NgramModel (n , [x for x in f r])
. . . fm_en= n l t k . model . NgramModel (n , [x for x in en])
. . . " " . j o i n (fm_f r . generate (5 0))
. . . " " . j o i n (fm_en . generate (5 0))
. . . pr in t " \ n "
. . .
’ . ’
’ r . ’

" Rais amerl t t l ag r ven t e r t l ’ \ xc3 \ xa9sess \ xc3 \ xa9n i t r e r c u t a l "
’ REurecte i r g o co ored owon oeniere ss , i a s t t h o f m ’

’ Restres unenneur pu i souseurammient \ xc3 \ xaachansien ces ’
’ Reget be a reaso , ta tu rp rode r , reg ion to loyme gre ’

" Repriode 34 ann \ xc3 \ xa9e d ’ i n t \ xc3 \ xa9 . \ nUne pour les espor ts 1 "
’ Resul ture , f o r Objects po in ty−f i v e alongrammently ’

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Background
Details
Console

What we just used

nltk.model.NgramModel

It takes the value of n for the n-gram model and the list of
events over which take the n-grams.
The class is usually employed over words, but NLTK is very
flexible and it operates over any list of items.
A model is a probabilistic description of a set of instances.

A model can tell you how likely a new instance is to belong
to that set.

The method prob from ModelI, superclass of
NgramModel.

And it can also produce random sequences representative
of the model.

The method generate just employed.

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Background
Details
Console

Console (cont.)

>>> def make_dict (x) :
. . . return d i c t (ngram=x)
. . .
>>> t r a i n = [(make_dict (x) , ’ en ’) for x in n l t k . u t i l . ingrams (en , 4)] + \
. . . [(make_dict (x) , ’ f r ’) for x in n l t k . u t i l . ingrams (f r , 4)]
>>>
>>> c l a s s i f i e r = n l t k . Na iveBayesClass i f ie r . t r a i n (t r a i n)
>>> c l a s s i f i e r . show_most_ informat ive_features ()
Most I n f o rma t i ve Features

ngram = (’ i ’ , ’ n ’ , ’ g ’ , ’ ’) en : f r = 455.3 : 1.0
ngram = (’ ’ , ’ d ’ , ’ e ’ , ’ ’) f r : en = 200.6 : 1.0
ngram = (’ t ’ , ’ r ’ , ’ e ’ , ’ ’) f r : en = 192.5 : 1.0
ngram = (’ n ’ , ’ g ’ , ’ ’ , ’ t ’) en : f r = 161.9 : 1.0
ngram = (’ s ’ , ’ ’ , ’ t ’ , ’ h ’) en : f r = 155.2 : 1.0
ngram = (’ d ’ , ’ e ’ , ’ ’ , ’ c ’) f r : en = 137.0 : 1.0
ngram = (’ t ’ , ’ ’ , ’ o ’ , ’ f ’) en : f r = 135.1 : 1.0
ngram = (’ u ’ , ’ r ’ , ’ ’ , ’ l ’) f r : en = 132.7 : 1.0
ngram = (’ o ’ , ’ n ’ , ’ t ’ , ’ ’) f r : en = 132.2 : 1.0
ngram = (’ i ’ , ’ n ’ , ’ ’ , ’ t ’) en : f r = 123.5 : 1.0

>>>
>>> fea tu res = [x [1] for x in c l a s s i f i e r . mos t_ in fo rmat ive_ fea tu res (1 0 0)]
>>> # [(’ i ’ , ’ n ’ , ’ g ’ , ’ ’) , (’ ’ , ’ d ’ , ’ e ’ , ’ ’) , (’ t ’ , ’ r ’ , ’ e ’ , ’ ’) , (’ n ’ , ’ g ’ , ’ ’ , ’ t ’) , (’ s ’ , ’ ’ , ’ t ’ , ’ h ’) , (’ d ’ , ’ e ’ , ’ ’ , ’ c ’) , (’ t ’ , ’ ’ , ’ o ’ , ’ f ’) , (’ u ’ , ’ r ’ , ’ ’ , ’ l ’) , . . .

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Background
Details
Console

What we just used

nltk.util.ingrams,
takes as input a sequence and the n for the n-grams

Our sequence is the training string, a sequence of
characters.

returns a list of tuples of the specified size.
nltk.util.ingrams([1,2,3,4,5],3) → [(1, 2, 3), (2,
3, 4), (3, 4, 5)]

The training data for the NLTK classifiers is a list of pairs.
The first entry is a dictionary of feature names mapped into
feature values.

We only have one feature ‘ngram’, hard-coded in the
make_dict helper function.

The second entry is the class label (French and English in
our case).

To train we use nltk.NaiveBayesClassifier.
There are other classifiers and bindings to external
packages like Weka.
I choose that classifier because it is very robust, fast to train
and performs well in this problem.

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Background
Details
Console

Console (cont.)

>>> def gen_feats (s) :
. . . return d i c t ([(x , 1) for x in n l t k . u t i l . ingrams (s , 4) i f x in f ea tu res])
. . .
>>> f i n a l _ t r a i n = [(gen_feats (l i n e) , ’ en ’) for l i n e in en . s p l i t (’ \ n ’)] + \
. . . [(gen_feats (l i n e) , ’ f r ’) for l i n e in f r . s p l i t (’ \ n ’)]
>>> f i n a l _ c l a s s i f i e r = n l t k . Na iveBayesClass i f ie r . t r a i n (f i n a l _ t r a i n)
>>> f i n a l _ c l a s s i f i e r . show_most_ informat ive_features ()
Most I n f o rma t i ve Features

(’ i ’ , ’ n ’ , ’ g ’ , ’ ’) = 1 en : f r = 286.3 : 1.0
(’ t ’ , ’ r ’ , ’ e ’ , ’ ’) = 1 f r : en = 174.3 : 1.0
(’ d ’ , ’ e ’ , ’ ’ , ’ c ’) = 1 f r : en = 133.7 : 1.0
(’ s ’ , ’ ’ , ’ t ’ , ’ h ’) = 1 en : f r = 128.3 : 1.0
(’ n ’ , ’ g ’ , ’ ’ , ’ t ’) = 1 en : f r = 126.3 : 1.0
(’ o ’ , ’ n ’ , ’ t ’ , ’ ’) = 1 f r : en = 125.0 : 1.0
(’ t ’ , ’ ’ , ’ q ’ , ’ u ’) = 1 f r : en = 109.7 : 1.0
(’ t ’ , ’ ’ , ’ o ’ , ’ f ’) = 1 en : f r = 105.7 : 1.0
(’ u ’ , ’ r ’ , ’ ’ , ’ l ’) = 1 f r : en = 104.6 : 1.0
(’ ’ , ’ d ’ , ’ e ’ , ’ ’) = 1 f r : en = 101.8 : 1.0

>>> en_tweet = " I t ’ s not the l e a s t b i t s e l f i s h to be committed to y o u r s e l f because being your absolu te best , i s what enables you to be of se rv i ce to others . "
>>> f r_ twee t = " vos re tou rs pour l a q u a l i t e de l a TV chez Bouygues sur iPhone , c ’ es t bien ? "
>>> f i n a l _ c l a s s i f i e r . b a t c h _ c l a s s i f y ([(gen_feats (en_tweet))] + [(gen_feats (f r _ twee t))])
[’ en ’ , ’ f r ’]
>>> f i n a l _ c l a s s i f i e r . p r o b _ c l a s s i f y ((gen_feats (en_tweet))) . prob (’ en ’)
0.99991573927860278
>>> f i n a l _ c l a s s i f i e r . p r o b _ c l a s s i f y ((gen_feats (f r _ twee t))) . prob (’ f r ’)
0.999999926520446

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Background
Details
Console

What we just used

Interestingly, there’s very little new NLTK-specific “magic”
in the last bit, it is just Python!

That is why we can say NLTK blends itself into Python
rather than use it as a black-box.

We want to train a classifier over the top M most
informative 4-grams (we use 100, the default for
most_informative_features) as features.

Before, train had inside a dictionary with only one key
‘ngram’, now it will have at most 100 keys, each one for a
top informative 4-gram.
That process is accomplished by the gen_feats helper
function, it goes through all the 4-grams in the string and
filters only the ones in most informative features.
Using the default constructor for dict means duplicates
are not accounted for.

Some Python magic can change that, although I prefer
binary features.

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Background
Details
Console

What we just used (cont.)

Once trained, we are ready to predict!
We took two tweets randomly from
http://twitter.com/public_timeline.
One in French, one in English.
Using the batch_classify method, both tweets are
correctly identified.
Using the prob_classify method, we can also see they
do so with very high probability.

Pablo Duboue NLTK

http://twitter.com/public_timeline

Intro
Tutorial

Remarks
Summary

Natural Language Processing
Frameworks

About The Speaker

PhD in CS, Columbia University (NY)
Natural Language Generation

Joined IBM Research in 2005
Worked in

Question Answering
Expert Search
DeepQA (Jeopardy!)

Nowadays
Left IBM Research in August, currently on sabbatical
Helping organize the Debian Conference
Member at Foulab
Cooking some start-up ideas
Will be teaching in Argentina March-June

mailto:pablo.duboue@gmail.com

Pablo Duboue NLTK

mailto:pablo.duboue@gmail.com

Intro
Tutorial

Remarks
Summary

Natural Language Processing
Frameworks

Some comments about the state of the art in NLP

Open discussion.

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Natural Language Processing
Frameworks

Is NLTK production ready?

Sure, if your production environment tolerates Python, then
it will fit fine with NLTK.
However, the maturity of the different packages varies
wildly and you might end up with memory hog components
that are just unusable.

E.g., the source language identification piece I just showed
(wink)

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Natural Language Processing
Frameworks

NLTK vs The World

GATE
UIMA

Pablo Duboue NLTK

Intro
Tutorial

Remarks
Summary

Where to go from here

NLTK is awesome
Give it a try...
Read the book on-line or buy it to support the project

We can do some NLTK related sprints.
I will most likely do a NLTK hands on tutorial covering more
material at Foulab.
Ping me if you like to chat about NLP, particularly the
generation bit.

Pablo Duboue NLTK

	Introduction
	Natural Language Processing
	Natural Language Toolkit
	Python

	Tutorial: Determining source language of a document
	Background
	Details
	Console

	Remarks
	Natural Language Processing
	Frameworks

	Summary

