On the Robustness of

Standalone Referring Expression Generation

Algorithms Using RDF Data

Pablo Duboue, Martín Domínguez and Paula Estrella

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba

Córdoba, Argentina

- The need of robust NLG algorithms.
- 3 algorithms of REG on anachronistic input.
 - On old data, produce a ref. expression, check whether holds.
 - We do not analyze whether the referring expression is good.
 - We have evaluated their goodness in [Pacheco et al., 2012].
- We found poor results with marginal differences among the algorithms.
 - Gardent's algorithm might be ahead but using closed world assumptions.
 - Nice task and problem, worth extending.

• Classic NLG problem

- Input: set of entities (with a distinguished element), set of triples pertaining to the entities.
- Output: a Definite Descriptions (DD), set of *positive triples* and a set of *negative triples*.
- Question: how good are referring expressions over erroneous data?
 - Naturally occurring errors using anachronistic data.
- Example: distinguish Paul McCartney from Ringo Starr, John Lennon, George Harrison

- NOT associated musical artist: Plastic Ono Band

Three REG Algorithms

• DR [Dale and Reiter, 1995]

- Greedy approach, use a **default ordering**.

• Gardent [Gardent, 2002]

- Constraint satisfaction programming
 - * Also needs a default ordering.
- Generates negations.
- Graph [Krahmer et al., 2003]
 - Graph isomorphism.
 - * Also needs a default ordering.

Experiments With Wikinews-derived REG Tasks

• Wikinews, news articles with interwiki links.

Former [[New Mexico]] {{w|Governor of New Mexico|governor}}
{{w|Gary Johnson}} ended his campaign for the {{w|Republican
Party (United States)|Republican Party}}

• Focus on people and organizations

Algorithm	Execution Errors	Dice	Omission Errors	Inclusion Errors		
People – Entity has "birth date"? \Rightarrow person (3,051 tasks)						
Incremental	232 (5%)	0.48	1,406 (50%)	145 (5%)		
Gardent	0 (0%)	0.58	1,089 (36%)	554 (18%)		
Graph	15 (0%)	0.38	1,870 (62%)	20 (0%)		
Organizations – Entity has "creation date"? \Rightarrow organization (2,370 tasks)						
Incremental	1,386 (45%)	0.69	305 (31%)	3 (0%)		
Gardent	829 (27%)	0.70	338 (22%)	357 (23%)		
Graph	934 (31%)	0.06	1,347 (94%)	2 (0%)		

- Alusivo: an Open Source implementation of REG algorithms
 - -https://github.com/DrDub/Alusivo
 - Java, Maven, RDF-based
- Interface
 - public ReferringExpression resolve(URI referent, List<URI> confusors, RepositoryConnection repo)
- Libraries
 - Sesame (RDF)
 - ChocoSolver (CSP)
 - jgrapht (Graph algorithms)

- DBpedia [Bizer et al., 2009] is an ontology curated from Wikipedia infoboxes
 - Infoboxes are the small tables containing structured information at the top of most Wikipedia pages.
 - The mappings between the infoboxes labels to the ontology is done in a wiki itself: http://mappings.dbpedia.org/.
 - The source code of the scrapping scripts is also available with all its development history.
- Not to be confused with a new project targeting to provide structured information to Wikipedia, wikidata.

Two Versions: Compared

Type files analysis					
Property	3.6	2014			
Number of triples	6,173,940	28,031,852			
Unique subjects (entities)	1,668,503	4,218,628			
Unique objects (types)	250	547			
Max objects per subject	6	16			

Mapping files analysis					
Property	3.6	2014			
Number of verbs	1,100	1,370			
Number of triples	13,795,664	33,449,633			

- However, many entities lost their types
 - From 20,693 Politicians in 3.6, 4,542 are gone (20%-25%).
 - However, the total Politicians in 2014 is 40,343.

Error Prone Task

NAACL 2012 bug

- DBpedia distributed in two files, we used only one.

• MICAI 2015 bug

```
FileInputStream inNew = new FileInputStream("data/people.tuples.new");
Model mNew = Rio.parse(inNew, "http://localhost/", RDFFormat.NTRIPLES);
Repository repNew = new SailRepository(new MemoryStore());
ValueFactory fNew = repNew.getValueFactory();
RepositoryConnection connNew = repNew.getConnection();
connNew.add(mNew);
```

```
FileInputStream inOld = new FileInputStream("data/people.tuples.old");
Model mOld = Rio.parse(inOld, "http://localhost/", RDFFormat.NTRIPLES);
Repository repOld = new SailRepository(new MemoryStore());
ValueFactory fOld = repOld.getValueFactory();
RepositoryConnection connOld = repNew.getConnection();
connOld.add(mOld);
```

Learning Orderings

• Iberamia, to appear:

– Using Robustness to Learn to Order Semantic Properties in Referring Expression Generation, Duboue and Domínguez.

Intuitions

– A good ref. expression should refer to stable properties.

Results

- Robustness helps to learning ordernings.
- But popularity on a folksonomy is a stronger signal.

- DBpedia/Wikinews is a suitable source for doing research on robust REG algorithms.
- Where to go from Here:
 - Better understanding of the parameterization of the algorithms.
 - Distinguish data changes from missing data.
 - More REG algorithms.
 - Better testing of our current implementations.

Backup Slides

References

- [Bizer et al., 2009] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and Hellmann, S. (2009). DBpedia-a crystallization point for the web of data. Web Semantics: Science, Services and Agents on the World Wide Web, 7(3):154–165.
- [Dale and Reiter, 1995] Dale, R. and Reiter, E. (1995). Computational interpretations of the gricean maxims in the generation of referring expressions. *Cognitive Science*, 19(2):233–263.
- [Gardent, 2002] Gardent, C. (2002). Generating minimal definite descriptions. In *Proceedings of the 40th Annual Meeting on Association for Computational Linguistics*, pages 96–103. Association for Computational Linguistics.
- [Krahmer et al., 2003] Krahmer, E., Erk, S., and Verleg, A. (2003). Graph-based generation of referring expressions. *Computational Linguistics*, 29:53–72.
- [Pacheco et al., 2012] Pacheco, F., Duboue, P. A., and Domínguez, M. A. (2012). On the feasibility of open domain referring expression generation using large scale folksonomies. In *Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, NAACL HLT '12, pages 641–645, Stroudsburg, PA, USA. Association for Computational Linguistics.