
ObjectDtree: A simulation tool for business-like
scenarios

Ing. Daniel Blank and Lic. Pablo Duboué

Universidad Empresarial Siglo 21
Rondeau 165 (5000) Córdoba – Argentina

{blankd, pablod}@uesiglo21.edu.ar

Abstract. The modeling of business-like simulations involves the need to deal
with actors with a complex, usually non-deterministic, interaction-logic. This
behavior is frequently modeled by the use of decision trees.
 In this paper we introduce ObjectDtree, a discrete event simulator based on
objects whose behavior is modeled by non-deterministic decision trees. The
goal of our work is to develop a methodological approach and tools for the
modeling and simulation of business situations, characterized by players inter-
acting in a game-like, competitive environment.

Keywords. Business modeling, object oriented simulation, decision trees, func-
tional language application

Introduction

The modeling of business-like simulations involves the need to deal with actors with
a complex, usually non-deterministic, interaction-logic. This behavior is frequently
modeled by the use of decision trees, a concept that comes from Game Theory (von
Neumann and Morgenstern, 1953). This technique has widespread use (take for in-
stance, Clemen 1991 and Schiffman and Kanuk 1997).

In this paper we introduce ObjectDtree, a discrete event simulator based on objects
whose behavior is modeled by non-deterministic decision trees. The goal of our work
is to develop tools for the modeling and simulating of business situations, character-
ized by actors interacting in a game-like, competitive environment.

Therefore, ObjectDtree is an implementation of a simulator for Discrete Event
Simulation systems (DEVS) following the Object Oriented Programing (OOP)
paradigm, toghether with the ability of capturing objects behavior by means of a
mixture of tailored trees and imperative coding.

Following Nance, R. E. (1981), we consider a DEVS as a modeling technique that
assumes that the system being simulated changes its states only at a set of finite (dis-
crete) points in its simulation life-time. The simulation model jumps from one state to

another upon the occurrence of an event. There are so many similarities between
DEVS and OOP that the later is usually used to implement the former.

Methodological Approach

Our proposed methodology is, basically, an OOP enriched with a non-traditional
method to express the behavior of the distinct objects upon extern interaction. The
previously stated intermixing of OOP and DEVS is captured in ObjectDtree by the
use of data-enriched events. These kinds of events are of an expressive power per-
fectly compared to a usual message in OOP. The innovative aspect of our contribution
is given by the use of decision trees in order to implement the response to each of
these events/messages.

Decision trees

A decision tree is a decision making modeling tool. It is supposed to capture the se-
quence of steps taken by an individual in order to choose among a set of possibilities.
The outcome of any choice fires a specific branch of more detailed questions until an
decision is finally reached. Although in our approach the decisions are binary (yes/no)
that implies no loss of generality. Table 1, taken from Schiffman and Kanuk (1997),
shows there is broad use for yes/no questions.

Category Alternative A Alternative B
Consume deci-
sions

To buy or to consume a prod-
uct (or service)

Not to but or consume a prod-
uct (or service)

Brand decisions

[...]

To buy or to consume an spe-
cific brand

To buy or to consume the
client’s own brand
[...]

To buy or to consume a differ-
ent trademark

To buy or consume an estab-
lished brand
[...]

Payment deci-
sions

To cash the purchasing

To pay everything upon recep-
tion of the goods

To pay the purchasing with a
credit card
To pay in quotas

Table 1. Different types of buy-related decisions

Formally, we define a d-tree as a ‘n’-ary tree with queries as inner nodes and actions
as leaves. Each query should have a discrete response set that should be possible to
constrain with an upper bound beforehand. According to these bounds, a d-tree should

be provided for each possible outcome of the query. The leaves contain the actions or
decisions of the individual whose behavior is being modeled. In order to keep this
definition as broad as possible we impose no restrictions upon the actions that could
be executed.

The simulator

In its current state, ObjectDtree is a batch simulation tool that receives as inputs a set
of files describing the simulation to generate, and producing as output, the simulation
log (Fig. 1).

Fig. 1. Simulator diagram

Input files

As shown in Fig. 1 there are basically three types of input files:
 World files
 Environment files
 Kind definition files
In order to run a simulation, one Environment description file, one World description
file and one Kind1 file for each kind used are required.

1 We use the term kind as a synonym to the term class.

Kind 2 Kind nKind 1 ...

World
Environment

 D-Tree

The design rational used is the following: since we have different classes that we in-
tend to use in different simulations, therefore it was natural to kept them in separate
files for reuse (in a Java-like fashion). Then the World files contain the information
about which classes happen to exist in each particular simulation and how many in-
stances need to be created of each kind, together with instructions to initialize the at-
tributes of each of those instances. An example of World file is shown in Fig. 2.

World {
 "client.kind": 200 instances with
 { patience = RandomNorm(0.5, 0.001)
 ; money = RandomNorm(55.0, 10.0)
 ; internetuse = RandomNorm(15, 1.0)
 ; buy = RandomNorm(0.05, 0.001)
 ; visit = RandomNorm(0.5, 0.001)
 ; netspeed = RandomNorm(3.0, 0.1)
 ; requestTime = 0
 ; books = 0
 }
 "bookstore.kind": 1 instances with
 { booksSold = 0
 ; bookInStore = RandomNorm(0.75, 0.001)
 ; visitsNum = 0
 ; timeOutNum = 0
 ; requestNum = 0
 ; cancelNum = 0
 ; found = 0
 ; price = 0.0
 ; prices = Random(10.0, 50.0)
 ; netspeed = RandomNorm(10.0, 0.1)
 }
}

Fig. 2. World file example

In addition to the World we use the concept of Environment in order to distinguish
different simulation runs. The results obtained from a simulation can be quite sensible
to initial values, termination criteria etc. Therefore, several runs of each simulation
are required to obtain reliable data (Gogg and Mott 1995). We storage this kind of
per-run data in a file, which encloses the environment where this especific run is
being executed (not shown). Our primary concern here is the seed used by the
pseudo-random number generator. However other information could be included such
as termination criterion (maximum time reached or steady state) and, in case of

modeling system without perfect information, an extra temperature parameter could
be used.

Kind files

The definition of each class is contained in the Kind files, being them the core of Ob-
jectDtree. They have the general structure depicted in Fig. 3

Kind client {

 Attributes
 { attribute1: real // comment
 ; attribute2: real
 ; otherAttribute: integer
 }

 Events {
 event SOMEEVENT
 { eventData1: integer
 ; otherEventData: real
 }

 event ANOTHEREVENT
 { moreData: integer
 }
 }

 Behavior {
 on SOMEEVENT {
 [addEvent(
 ANOTHEREVENT { moreData = 5
 , event.otherEventData)
]
 }

 on ANOTHEREVENT {
 ask (event.moreData > attribute1 + Random()) {
 yes: { [attribute2 = 5.0] }
 no: { [attribute2 = 1.0] }
 }
 }
}

Fig. 3. Kind file

In the previous figure we see that the kind files contain three parts:

 Attributes definition
 Events definition
 Behavior definition

The attributes are typed variables containing the state information of each instance.
Currently only two types are supported: real and integer but extensions in this direc-
tion are straightforward. This attributes are read-only for the system and completely
hidden for any other instance. Following usual OOP terminology they are defined as
private information for each instance. However, any class can sense them by means
of global, system-wide queries. This approach to attribute hiding is identical to the
one taken in (Blank et al. 1996). It has the advantage of conforming to common dis-
tributed programming techniques (Chandy and Misra 1979), and facilitates the exten-
sion of ObjectDtree to a distributed environment.

The Events section following the Attributes section is needed by the one-kind-one-
file approach used. All these events are broadcast, which means they are received by
all the instances of every defined kind, however the sender ID is included in each
event data so some granularity can be achieved.

The Behavior section contains a programmatically defined d-tree for each sup-
ported event. The inner nodes of the tree are the ask terms. They are yes/no ques-
tions whose answers are d-trees contained following the yes:/no: keywords. The
actions are given by the sequence of instructions enclosed by [] brackets.

The query language includes Boolean algebra of logic terms, comparison of arith-
metic terms containing system queries, event data and instance attributes. Two system
queries are defined: HowMany and TheOne, with the following signatures:

HowMany (kind name, condition) returns integer ()

TheOne (kind name, condition) returns instance ()

The later picks in a non-deterministic fashion some instance of a given kind that
verifies a given query (a runtime error is risen if none is found) and allowing to in-
spect its attributes. Regarding the discussion about the privacy of the attributes this is
completely legal, as it is the system that is accessing the attributes of the instance. The
former gives back the quantity of instances of a given kind who satisfies a condition.

The action language includes instructions to assign attributes, add events, and cal-
culate statistics, among others. The interpreter internals make the extension of this
language fairly simple.

Simulator internals

The simulator was written in Concurrent Clean, a lazy evaluation functional language
developed at the Research Group on Functional Programming Languages of the
University of Nijmegen, Holland (Brus et al. 1987). The use of a lazy functional lan-
guage allowed us to speed–up the development cycle, obtaining an elegant solution
that could be mathematically formalized. Moreover we were able to develop, using
the available Clean tools, a Linux and Windows version of the interpreter without
changing a single line of code.

An example: Internet Bookstore

The following situation has been developed as an application example:

There are 200 potential buyers of books (customers) over Internet interacting with
a bookstore, which in turn is supplied by 5 editorials.
 Each individual customer connects to the web with a frequency modeled by the at-
tribute internetuse. For each connection the customer can hit the bookstore’s site
with a probability visit, with the probability of intention of buying a book modeled
by the variable buy. When the customer is interested in buying a book she/he sends a
request to the bookstore, which in turns should send back price and availability infor-
mation. With this information the customer decides whether she/he finally closes the
deal or not. However if the response takes too long the customer would eventually
leave the site (time-out).

The seller (bookstore) is always looking for requests. When a request arrives the
seller search the book in the stock. The variable BookinStore models the probability
of the book being in stock. If the book is not available the seller asks the editorials
(suppliers). The customer receives the event ANSWER_TO_CUSTOMER containing
price and availability information.

The editorial (supplier) is modeled by means of an object, which reacts to the
BOOKSTORE_REQUESTS event with an ANSWER_TO_BOOKSTORE message in-
dicating the availability of the book (modeled by its attribute BookinSupplier).

Other attributes are used to represent the characteristics of the problem such as
book prices, customer monetary capacity, maximum wait time, and so on.

The behavior of the bookstore, the editorials and the customers is modeled by
means of decision trees. Features describing the incidence of customer satisfaction
and spread of rumors on behavior are also included.

Bookstore SupplierCustomer

REQUEST
VISIT
TIMEOUT
ANSWER
BUY
BUY-DONE

PROVIDERREQUEST
PROVIDERANSWER

Fig. 4. Example diagram

Situation Books sold by time Books sold by unit of time

Virtual bookstore: a successful
(or not) experience from a client
with the bookstore reinforces
her/his willingness to buy (or
not).

Virtual bookstore: a successful
(or not) experience from a client
with the bookstore reinforces
her/his neighbors willingness to
buy (or not), besides her/his own.

Virtual bookstore: as in the
previous experience but a strong
negative rumor is injected into
the system at t=500.

Table 2. Results table

Conclusions

We find that our simulator fulfills the motivations that ended up in its building. The
resulting tool is robust and quite usuable. Moreover, its actual state seems to give us
an starting point for further development in different ways, as we will see in the next
section.

It could be argued that our d-trees have no difference with programming cascade
ifs in a usual OOP language. From the expressive power of the language this is pos-
sible. However, by taking the d-tree out from the shadows we are able to manipulate
it as any other piece of software.

Besides, it suggest an interesting methodological approach for modeling
managment, marketing and the similar situations. In order to develop it completely it
is necesary to extend this work multidisciplinarily. It also stands to be compared with
other approaches in order to see its benefits and limits.

Another point we were interested in was benchmarking lazy functional language
against CPU-intensive task such as DEVS. With this objective in mind, the choosing
of Clean as our programming platform was a right decision. The lazy features of the
language allowed us to capture some characteristics of DEVS simulation, such as
state duplication, etc. in a more economical fashion compared against usual (eager)
non-functional languages.

Further work

ObjectDtree is currently in active development with new features being added at fast
pace. Most of them fall into extensions to the language used to describe the objects
and user friendly interfaces to help the modeler’s tasks. Moreover, there are some ex-
tensions we plan to include in the system that will greatly expand the expressive
power of the tool, namely: adaptive decision trees (including genetic d-trees) and
middle-road actions.

The idea behind adaptive decision trees is to incorporate means to specify dynamic
changes to the strategy used by each kind. This can be taken to its limit by allowing
two different instances to merge their adapted d-tree into a new, child-like, one.

Middle-road actions, on the other hand, change the definition of the trees by allow-
ing the execution of actions in the inner nodes. Our main interest here is to simulate
queries with side effects.

Another promising area of extension is the migration of the simulator to a distrib-
uted environment, following Chang and Jones (1994). The most difficult part of the
task is getting rid of the global clock and global event queues. In spite of it, the way
we protect each instance variable as explained above, together with our programming
platform (lazy functional languages are well know for its facility to migrate to parallel
environments) makes it quite promising.

References

Barcio B., Ramaswamy, S., Macfadzean, R., Barber, K.: Object Oriented Analysis, modeling
and simulation of a National Air Defense. Simulation magazine vol 65 num 1 (1996)

Blank, D., Bruno, N., Duboué, P. A.: Desarrollo de un generador de simulaciones basado en
especificaciones visuales. In Proc. IX Simposio Internacional en Aplicaciones de
Informática (INFONOR’96), Antofagasta, Chile (1996)

Brus, T., van Eekelen, M.C.J.D., van Leer, M., Plasmeijer, M.J., Barendregt, H.P.: CLEAN – A
Language for Functional Graph Rewriting. In Proc. of Conference on Functional
Programming Languages and Computer Architecture (FPCA '87), Portland, Oregon, USA,
Kahn Ed., Springer-Verlag, LNCS 274, pp. 364-384 (1987)

Chang, W. and Jones, L. R.: Message-Oriented Discrete Event Simulation. Simulation
magazine vol 63 num 2 (1994)

Chandy, K. M. and Misra, J.: Distributed simulation: A case study in design and verification of
distributed programs. IEEE SE 5:440-452 (1979)

Clemen, R. T.: Making hard decisions. PWS – KENT Publishing Co., Boston, MA (1991)
Gogg, T. J. and Mott J. R.: Improve quality & productivity with simulation. JMI Consulting

Group 2nd ed. (1995)
Nance, R. E.: The time and state relationships in simulation modelling. ACM. 24(4):173-179

(1981)
Neelamkavil, F.: Computer simulation and modelling. John Wiley & Sons, New York, N. Y.

(1987)
Schiffman, L. G. and Kanuk, L. L.: Comportamiento del Consumidor. Addison Wesley

Latinoamericana 5th ed. (1997)
Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton

University Press, 3rd ed., (1953)

