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Abstract. I investigate the automatic acquisition of Content Selection
(CS) rules; a desirable goal, as the CS problem is quite domain depen-
dent. My learning uses a loosely aligned Text-Data corpus, a resource
increasingly popular in learning for NLG because they are readily avail-
able and do not require expensive hand labelling. However, they only
provide indirect information about the selected or not selected status of
each semantic datum. Indirect Supervised Learning is my proposed so-
lution to this problem, a solution common to other learning from loosely
aligned Text-Data corpora problems in NLG. It has two steps; in the first
step, the loosely aligned Text-Data corpus is transformed into a dataset
with classification labels. In the second step, supervised learning machin-
ery acquires the CS rules from this dataset. I evaluate the approach by
comparing the output of my system with the information selected by
human authors in unseen texts.

Keywords. Machine Learning, Content Selection, Statistical Methods,
Aligned Text-Data Corpora.

1 Introduction

Content Selection (CS), the problem of choosing the right information to
communicate in the output, is in general a highly domain dependent task; new
CS rules must be developed for each new domain. This is typically a tedious
task, as a realistic knowledge base contains large amounts of data selected.

I am interested in automatically acquiring a set of CS rules in a biographical
description domain. I want to learn these rules from a training dataset consisting
of input data and classification labels (selected or not-selected). These rules
decide whether or not to include a piece of information based solely on the
semantics of the data (e.g., the relation of the information to other data in the
input). However, that would require expensive hand-labelling. Instead, I turn to
a loosely aligned Text (Fig. 1 (a)) and Data (Fig. 1 (b)) corpus. Loosely aligned
Text-Data corpora are increasingly popular in learning for NLG because they
are readily available1 and do not require expensive hand labelling. However,

1 Examples of domains with available text data corpora include Biology (e.g., the bi-
ological KB and species descriptions); Geography (e.g., CIA fact-book and country



they only provide indirect information about the selected or not selected status
of each semantic datum. Indirect Supervised Learning2 is my proposed solution
to this problem, arguably a solution common to other learning from Text-Data
corpora problems in NLG. It has two steps; in the first step, the Text-Data corpus
is transformed into a training dataset of selected or not-selected classification
labels. In the second step, CS rules are learned in a supervised way, from the
training dataset constructed in the previous step.

Actor, born Thomas Connery on
August 25, 1930, in Fountainbridge,
Edinburgh, Scotland, the son of a
truck driver and charwoman. He
has a brother, Neil, born in 1938.
Connery dropped out of school at
age fifteen to join the British Navy.
Connery is best known for his por-
trayal of the suave, sophisticated
British spy, James Bond . . .
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Fig. 1. Loosely aligned Text-Data corpus.

The output of my machine learning system (Fig. 4) will select data that
can be further filtered and ordered by later stages in the generation pipeline
(e.g., see the spreading activation algorithm used in ILEX [1]). Because my
knowledge representation allows for cycles, the actual knowledge representation
is as a graph: each frame is a node on it and there are edges labelled with the
attribute names joining the different nodes. Atomic values are also represented
as special nodes. In this way, my CS rules contain decision logic only for these
special atomic nodes. In this paper, expressions such as “a piece of data to be
selected” are formalized as one of these atomic nodes in the graph.

In previous work [2], we presented a version of our system for learning CS
rules from a Text-Data corpus. The type of rules mined were very general, in
the form of Select-All/Select-None type of rules (e.g., select all relative
first names or do not select any of them). In this work, I defined a rule language
and perform a Genetic Search over the possible rules on that language, picking
the one that better explains a training dataset, built from the Text-Data corpus.
This new, improved approach let me augment the quality of the learned rules,

descriptions); Financial Market (e.g., Stock data and market reports); and Enter-
tainment (e.g., Role Playing character sheets and character descriptions).

2 Indirect Supervised Learning, where the system learns from indirect, teacher pro-
vided examples is not to be confused with Semi-supervised learning. The latter is a
bootstrapping method while the former is related to reinforcement learning.



making them closer to the type of rules NLG practitioners write to solve CS
tasks.

This paper is organized as follows: in the next Section, my domain (together
with the loosely aligned Text-Data corpus internals) is introduced. My methods
are presented in Sec. 3 followed by the experimental results. Related work and
conclusions are summarized at the end of the paper.

2 Domain: Biographical Descriptions

My technique applies to descriptive texts which realize a single, purely infor-
mative, communicative goal, as opposed to cases where more knowledge about
speaker intentions are needed. In particular, I focus on biography generation, an
exciting field that has attracted practitioners of NLG in the past [3–6].

I have gathered a loosely aligned Text-Data corpus in this domain. The Data
part contains information related to the person the biography talks about (and
that the system will use to generate that type of biography). However, not all
that information will necessarily appear in the biography. That is, the Data part
is not the semantics of the target text but the larger set of all things that could
possibly be said about the person in question.

To collect the Data, I crawled 1,100 HTML pages containing celebrity fact-
sheets from the E! Online website.3 I then proceeded to transform the informa-
tion in the pages to a frame-based knowledge representation (the final corpus
contains aprox. 50K frames).

The text part was mined from two different web-sites, biography.com, con-
taining typical biographies, with an average of 450 words each; and imdb.com,
the Internet movie database, 250-word average length biographies.

3 Methods

I present here my two step learning process. In the first step (Sec. 3.1), I use the
Text-Data corpus to infer the classification labels, selected or not-selected, in the
data side (that constitutes the training instances for the supervised learning).
In the second step (Sec. 3.2), I train a supervised classifier for the CS task.

3.1 Dataset Construction

The data selected for inclusion in the text can be divided into two classes: data
that appears verbatim in the text and data that is somehow verbalized. To deal
with the data copied verbatim, I search for it in the text, in a process I call exact

matching, described next. Finally, the rest of the selected data is verbalized (e.g.,
c-comedian ⇒ “comedian”). I introduce a statistical selection process to target
these harder cases.
3 This process is not required to build a loosely aligned Text-Data corpus, I crawled

fact-sheets to provide structured knowledge while I was building the Knowledge
Component (that uses information extraction) for the ProGenIE generator [7].



Exact Matching. Exact matching aims to identify pieces from the input that
are copied verbatim to the output. When I found a piece of data appearing in
the text, I conclude that the data must be selected for inclusion in the text. The
output of this process is a set of labels (selected or not-selected) for each datum
in the input. This training dataset is to be used for supervised learning of CS
rules.

The overall matching operation is prone to two type of errors: omission (if
the atomic value is symbolic in nature, e.g., c-comedian appears in the text as
“he performed comedy for several years” or a different verbalization, e.g., “MA”

instead of “Maryland”) and over-generation (if there are several values for it,
e.g., “Smith” appears in the text and it is simultaneously the name of the father
and a brother). The latter errors were addressed with a post-processing step
based on automatically mined defeasible rules [8], that I cannot detail here by
lack of space. More interestingly, the former type of errors are addressed with
the statistical selection technique described below.

Statistical Selection. My statistical selection algorithm aims to identify vari-
ations on the data that produce variations on the text side. For example, all the
comedians (a semantic distinction induced from the data side) may have their
biographies with words such as “comedy,” “stand-up” and the like occurring on
them more often than in the rest of the biographies. To this end, I first generate
meaningful variations on the data side and then apply statistical filters to the
resulting partition of documents on the text side.

In previous work [2], we employed clustering on the atomic values to induce
the variations in the data side. I extend that work by replacing the clustering step
with an enumeration process. To see the reasons behind this extension, consider
the following example: in [2], we clustered all people who were born in November
and compared their biographies with the ones of the people born in December.
That approach turned up to do well. But now consider that clustering on the
atomic values (November, December, etc.) will not necessarily be so informative
in cases such as first names. Putting together all the relatives with named “John”

against the relatives named “Peter” is not a semantically meaningful distinction
on the data-side. In this extension, therefore, I was interested in enumerating
all rules that partition the input semantic data into two sets of a minimum size
(or minimum support). I employed then complete level-wise search4 [9] to obtain
them.

These rules belong to the same language of the final rules mined by the system
(Fig. 4). They are used to discriminate the full set of knowledge representations.
If any node on a knowledge representation is selected when the rule is applied
to it (that is, the rule returns true), then the whole knowledge representation is

4 Complete level-wise search is employed to search for all instances verifying a certain
property. Each instance has an associated complexity (its level) and the property
must be anti-monotonic: the higher the level, the smaller the number of instances
that verify the property. By enumerating the instances in a level-wise manner, all
instances that verify the property are guaranteed to be found in an efficient fashion.



selected for the cluster. The rules are enumerated as follows: for each data-path,
I record all possible atomic values and measure its support. I then perform a
number of passes (normally between 2 or 3), joining atomic values (in the form
of IN(. . . ) rules). At all times, I keep only the ones that have enough support.

After the atomic rules have been enumerated, I grow paths on the graph,
also by doing a number of passes (normally between 3 to 5). In each pass, a
working set goes through a number of steps. In the forward step, I take all the
nodes reachable from the nodes in the data class through a path in the working
set and record which labels depart from them. The extension of the paths using
these edges form a candidate set that I then filter for paths without enough
support. In the backward step, I build now a candidate set by taking the paths
in the working set and going back to their parents. Again, I filter the paths by
support. The new paths constitute the working set for the next round. Finally, I
combine all the paths that had enough support in this enumeration process with
the atomic values from the previous step to form TRAVERSE rules. The paths
alone are also employed to form TRAVERSE-EQ rules. The resulting rule set is
again checked for having enough support and for rules selecting the same set of
instances (that are deemed as synonyms and all but one are discarded).

Finally, I create advanced rules with AND and OR. These rules do not follow
level-wise behavior, and I thus only select a subset of them, up to some com-
plexity level. I combine rules from a working set a number of times (normally 2
or 3).

With this rule-induced partition of the training data I then look at the text
side, looking for difference on the language employed in each partition. In pre-
vious work, I employed cross-entropy of the language models induced by the
partition. This solution is satisfactory in pin-pointing a global variation on the
overall texts, but I wanted to obtain further information about the difference be-
tween the partitions.5 In this work, I investigated statistical tests on the counts
for each word on either partition. For example, if the partition is induced by
putting aside all comedians and writers in the input data, I then want to con-
clude that their associated biographies contain the words “comedian,” “wrote,”

and “producer” more than expected by chance on this corpus (Fig. 2).

Finally, I am left with two training datasets containing classification labels for
each piece of input data: one dataset produced by the exact matching process
and another dataset produced by the statistical selection process. I need to
combine them into a sole dataset for the supervised learning. I investigated
two ways to combine the data: full union and selected union. In the full union,
I just performed a logical OR of the information contained in both datasets.
However, this degraded the results, because the statistical selection data is much
noisier than the exact match data. Therefore, I introduced selected union, where
the datasets are pre-screened and certain types of input data are marked as
always exact matched (if the number of exact matched instances is higher than a

5 Cross-entropy is a feasible solution to this problem, but its results are difficult to
interpret. Furthermore, the extracted words of the new statistical tests can be later
on used to obtain training material for learning ordering (not only selection).



for relative #TYPE rule IN("c-sister-in-law", "c-sister"); words: sister,

often

for occupation #TYPE –

– rule EQ("c-occupation-writer"); words: during, which, own, writer, from,

years, also, success

– rule IN("c-occupation-model", "c-occupation-comedian"); words: mod-

eling, appearances, turning

– rule TRAVERSE("../#TYPE",f, IN("c-occupation-comedian",

"c-occupation-writer")); words: producer, wrote, comedian, which,

own, from, order, success

Fig. 2. Extracted Words.

percentage threshold on their total number). This ensures a balance between the
information coming from the exact match data set and the statistical selection
dataset, augmenting the signal-to-noise ratio in the final dataset.

3.2 Supervised Learning

From the Data Construction step, I have a dataset consisting of classification
labels (selected, not-selected) for each piece of input data. I want to learn that
mapping (from datum to classification label) and capture that knowledge in the
form of CS rules. Moreover, a robust machine learning methodology has the
chances of improving my results from the noise of the automatically constructed
datasets . The information available to the learner is thus the frame knowledge
representation (a graph) plus the labels. This implies learning from structural
information (as compared to learning from flat feature vectors). To this end, sev-
eral alternatives are possible, including using memory-based learning, inductive
logic programming, combinatorial algorithms and kernel methods [10]. The high
dimensionality of the decision space over graphs made me decide for a Genetic
Search over the space of all possible rules (Fig. 3), with the operators explained
below.

As fitness function, I employed the F
∗

α
measure (weighted f-measure from

Information Retrieval) of the classification task of recovering all selected labels
on the training datasets. Because I wanted to obtain rules with higher recall
that precision, I employed α = 2.0 (recall is doubly important than precision).
I added a MDL term to the fitness function to avoid over-fitting the data (by
memorizing all training instances).

As operators, I have a sexual reproduction operator that takes the two rules
and combine them in a new one, by traversing simultaneously both rule trees
and randomly deciding whether to combine both rules or stick to one of the
parents. I also have several mutation operators that disturb an already existing
rule. As initial population, I employ rules enumerated as described in Sec. 3.1.



TRUE() Always select.
IN(list of atomic values) Select if the value is in the list.
TRAVERSE(path in the graph,rule) Select if the node at the of the path are se-

lected by the rule.
TRAVERSE-EQ(path in the graph) Select if the value of the node at the end of the

path is equal to the value of the current node.
AND(rules) Select if all the rules select the current node.
OR(rules) Select if any of the rules select the current node.

Fig. 3. Rule Language. All rules are of the form f : node → {T, F}, that is, they take
a node in the knowledge representation and return true or false.

4 Experiments

I perform two rounds of training and testing. In the first round, I use 102 biogra-
phies from biography.com and associated framesets from E! Online. Of these
102, 11 were separated and tagged by hand as test-set.6 In the second round, I
used 205 biographies from ImDB. From these 205, 14 were separated as test-set.
Some of the rules I mined are shown in Fig. 4.

name first TRUE(); name last TRUE()

Always say first and last names.
education place country IN("Scotland","England")

As I used U.S. biographies, the country of education is only mentioned when it
is abroad.
significant-other #TYPE IN("c-husband", "c-wife")

Mention husband and wives (but not necessarily boyfriends, girlfriends or lovers).

Fig. 4. Learned rules.

My experimental results are summarized in the following table, where I see
the goodness of different approaches in the task of recovering the classification
labels. I measure precision, recall and F0.5-measure:7

6 While my system uses heuristics to approximate the selected data and then learns
to select that approximated selected content, the final evaluation is not heuristic: a
human judge analyzes each of the kept-aside texts and marks each piece of data as
appearing or not in the text.

7 I used F2.0 for the fitness function, but I report the quality of the system with the
standard F0.5. Results with F2.0 will be higher, but difficult to compare.



Experiment development imdb.com

Selected Prec. Rec. F* Selected Prec. Rec. F*

random 162 0.29 0.48 0.36 369 0.25 0.50 0.33
select-all 1129 0.26 1.00 0.41 1584 0.23 1.00 0.37

previous work[2] 550 0.41 0.94 0.58 891 0.36 0.88 0.51

only exact match 359 0.64 0.61 0.62 432 0.48 0.65 0.55
combined 292 0.57 0.81 0.67 432 0.49 0.68 0.57

test set 293 - - - 369 - - -

The table shows that my new system outperforms our previous work and two
baselines. As the selected data can be further filtered, recall is more important
than precision for my task. My combined exact match and statistically trained
supervised learner obtains higher recall than the exact match trained learner,
with a small penalty in precision. The imdb.com corpus is less homogeneous
than biography.com, making it a harder test set, although I still observe an
improvement over our previous system.

I also performed an evaluation of my Dataset Construction step: I put to-
gether all test and training corpus (102 Text-Data pairs) and obtain labelled
datasets as described in Sec. 3.1. I then separated the 11 datasets corresponding
to the test set and evaluated its goodness. I evaluated the exact match obtained
dataset separated from the statistically obtained one. I also evaluated the two
ways to combine them (one of them with three different thresholds).8

Exp. Exact Match Statistical Full Union Sel. 20% Sel. 30% Sel. 40%

Prec. 0.75 0.36 0.68 0.73 0.70 0.67
Rec. 0.64 0.13 0.70 0.69 0.61 0.53
F

∗ 0.69 0.19 0.69 0.71 0.65 0.60

The table shows the level of noise of the statistical selection process. When
directly joined with the exact match data, the precision drops sharply, but there
is new training material available in that dataset that cannot be captured by
the exact match. The overall effect is that recall grows and there is no impact
on F

∗-measure. The selected union remedies that, picking the best from both
datasets.

Comparing both tables I can also see that my system outperforms in recall
its training data. I therefore conclude that my supervised learning is generalizing
for my task beyond its initial training material, a very desirable goal.

5 Related Work

The CS literature in NLG is quite vast [11–14,1] highlighting the importance of
the problem.9 One of the most felicitous CS algorithms proposed in the literature

8 This is not akin to evaluate on the training corpus, because the labelling task is
unsupervised.

9 For a more thorough discussion of related work see [2, 15].



is the spread activation used in the ILEX project [1], where most salient pieces
of data are first chosen (by hard-coding its salience in a field of the knowledge
representation) and coherence is used to later select other data. My approach
can be thought as empirically grounded mean to obtain the most salient pieces
of data. This salience problem is also addressed in a summarization context [16],
where human annotation are employed to provide salience scores used later for
the evaluation of summaries.

The work of Reiter et al. [13] addresses also Knowledge Acquisition for CS.
Different from us, although, they employ non-automatic, traditional Knowledge
Engineering (and comment about how laborious is such task).

Text-Data corpora are recently gaining momentum as a resource for Statisti-
cal NLG [17–20]. They have been employed for learning elements at the content
planning [17], lexical choice [18, 19] and other levels [20].

Working on the problem of learning similar substructures in graphs, the
novel field of Graph Data Mining [10] is related to my supervised learning task.
I think the recent invention of graph kernels [21] is of particular importance for
the learning of CS logic.

6 Conclusions and Further Work

I have presented an improved method for learning CS rules, a task that is tedious
to perform manually and is domain dependent. My new system improves on
previously published results on two datasets.

I have mined these CS rules from a Text-Data corpus by means of Indirect
Supervised Learning. This two-step learning approach is conceptually easy to
grasp and it may apply to other learning from Text-Data corpora problems.

My new statistical test mines words that are related to a particular concept
or concepts in the input data. In further work, I would like to relate this to
ongoing research on the acquisition of linguistic data from non-linguistic sources
[20] and bootstrapping learning of named-entity tags [22].

Finally, I would like to compare my Supervised Learning solution (Stochastic
Search) with a kernel method, most specifically graph kernels [21].
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