Content Planner Construction via Evolutionary Algorithms and a Corpus-based Fitness Function

Pablo A. Duboue and Kathleen R. McKeown

in the city of New York

- Importance of Content Planning
 - Tied to Semantics
 - Rich Structure
 - Exponential in Time
 - Lengthy Input
- Importance of Learning for Content Planning
 - Content Planning Requires Customization for Particular Domains
- We Want to Induce a Content Planner
 - From a Corpus of Texts and Semantics

Structure of this talk

- 1. What we learn
 - Tree-like planners
- 2. How we learned it
 - Stochastic search using an empirical fitness function
- 3. How well the learned planners perform
 - Experiences developed to test their goodness

- this is John Doe he is 63 years old 175 centimeters he has a triple vessel coronary artery disease Ird and rca he also has non-insulin dependent diabetes milletus and hypertension his symptoms were not just pain , but feeling of tiredness of the chest when he was walking uphill he 's on coumadine ,
- mr. James Smith . 80 years old medical history : high blood pressure , coronary artery disease , status post acute mi , cardiogenic shock , ... ischemic ... cabg x 1 . on 11/1 , intra-aortic balloon pump insertion ... present for preop for cabg x 1 . medication : primacor , heparin preop and imipenem antibiotics . no allergies . under general anesthesia , easy intubation , # 8 tube 8 cc air leaking . easy

- The structure of the discourse in this type of reports is quite fixed.
- Such rigidity responds not only to logical reasons, but also to an accepted communication pattern in the domain.
- Kittredge, Korelsky and Rambow (1991) defined this type of discourse as rich in Domain Communication Knowledge or DCK.
- DCK-rich discourse is more suitable to be modeled by means of schemas or other structure-strong methodologies.

"J. Doe is a seventy-eight year-old male patient of Doctor Smith undergoing aortic valve replacement. He is sixty-six kilograms and one hundred sixty centimeters. His medical history includes allergy to penicillin and congestive heart failure.

.

An arbitrary planner

A planner in action

Semantic input sets (unordered)

patient A a patient B

drugend-1,drugend-2,hypotension-1,name-1,surgerylen-1

anesthesia-1, anesthesia-2, drugstart-1, hypertension-1, hypertension-2, medhist-1, name-1 surgerylen-1

planning

plan for B

Plans (ordered)

plan for A drugend-1,drugend-2,surgerylen-1,name-1,hypotension-1

medhist-1, anesthesia-1, anesthesia-2, surgerylen-1, name-1, drugstart-1, hypertension-1, hypertension-2

A better planner

Learning architecture

- Corpus collected during the evaluation described in McKeown et al. (2001).
- 25 patient data and 25 transcripts.
- In Duboue and McKeown (2000) we mined an annotated version of that corpus to extract ordered constraints between semantic elements.
- We use that corpus again, without annotations.

How to tell the goodness of a planner

- Genetic Algorithms (GAs) are a method to do stochastic search
 - Biological metaphor
 - Have been used in CP as a powerful technique to implement planners (Mellish et al. 1998)
 - Their use in NLP is growing
- They provide a good optimization technique to explore huge search spaces with highly interrelated features.
- We use them to explore the planners' space.

- How they work
 - In a genetic search, at all times a population of possible solutions, called chromosomes is kept.
 - Each chromosome has an associated fitness value, indicating is apparent goodness.
 - In each step of the search, or **generation**, a percentage of the worst-fitted chromosomes is discarded.
 - The empty slots are filled by applying **operators**, creating new chromosomes by mixing two existing ones (sexual reproduction) or by making changes in a existing one (mutation).

- A GA then is defined by:
 - Chromosomes
 - Fitness function
 - Operators

- A GA then is defined by:
 - Chromosomes \rightarrow planner trees
 - Fitness function
 - Operators

- A GA then is defined by:
 - Chromosomes \rightarrow planner trees
 - Fitness function \rightarrow alignment, orderings
 - Operators

- A GA then is defined by:
 - Chromosomes \rightarrow planner trees
 - Fitness function \rightarrow alignment, orderings
 - Operators \rightarrow generation motivated

Operators

- Our operators are motivated by the generation problem at hand.
- One reproductive operator (cross over).
 - Mixes two chromosomes by selecting top level subtrees from each one.
- Three asexual operators (mutations), given a random internal node:
 - Node Insertion: move some randomly selected children to a newly created subnode.
 - Node Deletion: absorb one of its children.
 - Shuffle: randomize the order of its children.
- New instances are created by insertion and shuffling.

 $\left| if(F_C < 0)F_C, F_A \right|$

• We replace a computationally expensive fitness function with a faster but approximate one

- in order to speed up the early stages of the population

- For the first stages, we use a constraint-based function, F_C , using the ordering constraints mined by Duboue and McKeown (2001).
- If the results returned by it are good enough, we turn to a full-fledged alignment-based function F_A .

F_C : Constraint-based fitness function

- This function works as follows:
 - given a set of semantic inputs;
 - the chromosome is used to generate corresponding plans;
 - then order constraints are checked for validity.

• The actual elements being compared include higher level constructions.

- Our alignment-based fitness function takes a chromosome an plug it inside our MAGIC system, replacing its hand-built planner
- The modified generation system is used with the 25 semantic inputs to generate 25 reports
- Each of these reports is measured for similarity against the transcript of the human report given at the time the semantic input was acquired
- The similarity scores are then averaged to result on the fitness value for the chromosome.

F_A : Alignment-based fitness function

• Three inputs (unordered)

- **1.** drugend-1,drugend-2,hypotension-1,name-1,surgerylen-1
- 2. drugend-1, hypertension-1, name-1, surgerylen-1
- **3.** drugstart-1, medhistory, name-1, surgerylen-1

• Transcripts (human produced)

- 1. John Doe had one episode of hypotension. By the end of the surgery he received Dopamine and Levophed. His total bypass time was 2h and 30m.
- Jane Doe had one episode of hypertension and by the end of case she received Vecuronium. She was in surgery for 1h and 15m.
- **3.** James Smith is a diabetic patient that underwent a 3h surgery. We gave him Dopamine after induction.

F_A : An example (Planning)

• Using the improved planner,

Generated plans

- 1. name-1, drugend-1, drugend-2, hypotension-1, surgerylen-1
- 2. name-1,drugend-1,hypertension-1,surgerylen-1
- 3. name-1, medhistory, drugstart-1, surgerylen-1
- Output from generator
 - 1. John Doe is a patient. He received Dopamine and Levophed at the end of the surgery. He had hypotension. His total surgery time was 2h and 30m.
 - Jane Doe is a patient. She received Vecuronium at the end of the surgery. She had hypertension. Her total surgery time was 1h and 15m.
 - **3.** James Smith is a patient. He has a past medical history of diabetes. He received Dopamine at the start of the surgery. His total surgery time was 3h.

• Alignment (first patient)

• This alignment produce an score that is then averaged over the different patients.

- Pairwise alignments computed using the Needleman–Wunsch algorithm, as defined by Durbin et al. (1998).
- A dynamic programming-based algorithm that computes global alignments.
- Using an affine gap penalty.
- These alignments do not allow flipping:

A-B-CC-B-A will only recover the alignment of B.

- They capture the notion of ordering more appropriately for our needs.
- Algorithm adapted to use the information content of words:
 - measured in a 1M-token corpus of related discourse.
 - estimates the goodness of substituting one word by another.

- To evaluate the ideas explained before we performed a series of experiments, using 25 data/text pairs from the MAGIC system evaluation (McKeown et al. 2001).
- A population of 2000 chromosomes was kept, discarding the 25% worst fitted chromosomes in each cycle.
- This population was growth for an average of 16 generations, in ten independent experiments.

Learning curve: Best Chromosome

• The learning process can be seen as we follow the evolution of the fitness value of the best instance in the population.

Learning curve: Overall Population

• Another way to appreciate the learning process is to take a look at the goodness of the population as a whole, on different generations.

- This metric computes how similar a planner is to a gold standard by looking at them as trees.
- Both planners have the same leaf-set, while their internal nodes are arbitrary.
- We count the number of common ancestors between each pair of nodes and record this in a matrix corresponding to each planner.
- The average difference between the two matrices reflect the level of similarity between the two structures. A value of 0 implies perfect match.
- This metric does not capture ordering

Metric₁: Number of common ancestors (Example)

Plan I

	A	D	E	Н	I	N	M	S
anesthesia A	2	1	2	1	2	2	1	2
drugend D	1	2	1	1	1	1	2	1
drugstartE	2	1	2	1	2	2	1	2
hypertension H	1	1	1	2	1	1	1	1
hypotension I	2	1	2	1	2	2	1	2
name N	2	1	2	1	2	2	1	2
medhist M	1	2	1	1	1	1	2	1
surgerylen S	2	1	2	1	2	2	1	2

Gold Standard

	Α	D	Е	Η	I	Ν	М	S
А	2	2	2	1	1	1	1	1
D	2	2	2	1	1	1	1	1
Е	2	2	2	1	1	1	1	1
Н	1	1	1	2	2	1	1	1
I	1	1	1	2	2	1	1	1
Ν	1	1	1	1	1	2	2	1
М	1	1	1	1	1	2	2	1
S	1	1	1	1	1	1	1	2

		Α	D	Ε	Н	Ι	Ν	Μ	S
Difference	А	0	1	0	0	1	1	0	1
	D	1	0	1	0	0	0	1	0
	Е	0	1	0	0	1	1	0	1
	Н	0	0	0	0	1	0	0	0
	Ι	1	0	1	1	0	1	0	1
	Ν	1	0	1	0	1	0	1	1
	М	1	1	1	1	1	1	0	0
	S	1	0	1	0	1	1	0	0

Ν Μ

Difference matrix average (metric₁): $\frac{32}{64} = 0.5$

• To measure ordering behavior, we align the output of our gold standard planner (MAGIC), against the output of the evaluated planner.

• We average this over a set of semantic inputs (different from the ones used for learning).

System	Metric ₁	Metric ₂
learned planners	1.82	45.25
baseline	3.06	2.54

- As baseline, we use the initial population of the ten runs (20K randomly built planners in total).
- The MAGIC planner was used as our gold standard
 - It has been previously evaluated by domain experts as highly accurate.
 - It was not involved in any part of the our learning process.

- We developed a fitness function for content planners
 - Based on alignments between generated text and human text
 - Speed-up by using order constraints
- A suitable planner representation
 - It can be learned.
 - It has been used to solve problems in real domains
- Genetic Algorithms are a useful tool for learning content planners.
- Future work:
 - Characterize the domains where this technique is applicable
 - Improve and analyze the quality of the learned plans