
Using lexical functional grammars for NL

systems

Javier Blanco and Pablo Duboué

Facultad de Matemática, Astronomı́a y F́ısica (FAMAF)
Ciudad Universitaria, 5000, Córdoba, República Argentina.

E-mail: blanco@mate.uncor.edu

E-mail: pablod@hal.famaf.unc.edu.ar

Abstract. The theory of Lexical Functional Grammars (LFG) was cre-
ated at the beginning of the 1980’s and it is a linguistic formalism based
on a descriptive, unification-based theory. This formalism has been usu-
ally tackled with the use of unification based approach (logic program-
ming). In this work we describe a Haskell parser for LFG, parametric
with respect to the grammar and the lexicon, targeting the resolution of
the symbolic equations’ system generated by the theory.

1 Introduction

This article describes a functional parser for an specific linguistic theory. The
necessary linguistic background will be introduced in section 1.1, the proposed
parser will be analyzed in section 2. In section 3 we will describe the unification
algorithm that is the core of the parser. Due to space restrictions only a high
level analysis of the algorithm will be presented. For a full description, you may
refer to [Dub98] (copies are available (electronically) from the authors). Finally,
some results and further extensions will be discussed in the conclusions.

1.1 LFG

The theory of Lexical Functional Grammars was introduced by Joan Bresnan
and Ronald Kaplan [BK82]. It is considered one of the main modern syntactic
theories in the field of linguistics. A lexical functional grammar assigns two levels
of syntactic description to every sentence of a language: a constituent structure

and a functional structure. Constituent structures (c-structures) characterize the
phrase structure configurations as a conventional phrase structure tree. Surface
grammatical functions such as subject, object and adjuncts are represented in the
functional structure (f-structure).

The c-structure is the parse tree, or set of parse trees (in the presence of
an ambiguous grammar), generated by a set of context-free rules. This context
free rules are extended by the use of functional schemata, which are a sets of
equations that decorate each symbol. The format of an LFG rule is shown in
figure 1.

S → NP V P

(↑ SUBJ) =↓ ↑=↓

Lists of functional schemata

(0 or more schemata under each symbol

HHHY
���:

Fig. 1. Format of LFG rules.

These functional annotations are instantiated to provide a formal description
of the f-structure. The smallest structure satisfying those constraints is the gram-
matically f-structure associated with the sentence. An f-structure is a hierarchical
attribute-value matrix. We will introduce f-structures by means of an example
(for a full definition see [Kap89]). An f-structure could be seen on figure 2. It
can be read as follows: the f-structure f5 contains a line with SUBJ as attribute
and the f-structure f2 as value. In symbols, this is written as (f5 SUBJ) = f2.
Accordingly, we can read in the figure that the f-structure f3 has a line with
attribute NUM and value 3. In other words, (f3 NUM) = 3. Since the equa-
tion f3 = f2 holds, we can deduce (f5 SUBJ NUM) = f3. The idea behind
LFG is to relate the functional annotations in the rules with a formal system of
equations of the kind we have just described.

f1

f4

f5

2

6

6

6

6

6

6

6

4

PRED ‘SEE < (f5 SUBJ)(f5 OBJ) >’

SUBJ
f2

f3

2

4

PRED ‘JOHN’
NUM SING

PERS 3

3

5

OBJ
f6

f7

2

4

PRED ‘MARY’
NUM SING

PERS 3

3

5

3

7

7

7

7

7

7

7

5

Fig. 2. An f-structure.

The theory also got part of its name from the important role played by the
lexicon. Several issues —such as some kinds of agreement— are resolved at the
lexical level. The high complexity of the lexicon allows to cope with some of
the ambiguities of the natural languages (e.g. the same word belonging to many
grammatical classes). The lexical entries are depicted in figure 3.

The complete version of this work includes a deeper understanding of the
theory by means of a fully-detailed example.

2 Our work

NLC

Representation of item

�
�
��� Syntactic category

����
John N (↑ PRED) =‘JOHN’

(↑ PERS) = 3

(↑ NUM) = SING

List of functional schemata

HHHY

Fig. 3. Format of LFG lexical items.

Following the lines of the previous sections we built a parser for LFG written
in the Haskell functional language. Our approach consists of an interpreter, i.e.,
we take the grammar and lexicon as parameters, together with the sentence to be
parsed. This approach, although less efficent, encourages experimentation over
different lexicons and grammars.

2.1 Main function

The main function receives as parameters data structures representing the gram-
mar (GramF), and the lexicon (LexiconF), and also the String to be parsed,
returning an f-structure (FEstr). Since it is possible for the parser to find that
the sentence is not syntactically correct, we follow normal practice in functional
programming by representing this kind of failures by an empty list [Wad85].
This may be used also to produce more than a parse tree in case of ambiguous
grammars. Nevertheless, the solver will always work with just one parse tree, re-
turning at most one f-structure. This fact provides a good separation of concerns.
Therefore, the function lfg has the following type:

lfg :: GramF − > LexiconF − > String − > [FEstr]

The lfg function is defined by a serie of sub functions that perform one step
forward toward the completion of the f-structure. The figure 4 shows the sub
function division.

parser. This function performs the generation of the parse tree that is
produced by the context free grammar. To accomplish his task it uses the
monadic parser combinators, introduced by [Hut92], [HM96] and [Wad95]. In
this work we do not define a lexer. One may think of this absence as a flaw,
because this solution scales up unsatisfactorily. However, for small lexicons
it works fine and it is a nice example of the expressive power of the parser
combinators. Special care has been taken during the construction of the tree
to preserve the functional annotations. That will decorate each node in the
final tree (FTree).

lfg

parser - numerate - fInstan-
ciate

- fGen-
Descr

- fSolver -fValidate

Fig. 4. Main function description (lfg function).

numerate. A function that makes use of a state monad [Wad92] and traverse
the whole FTree, assigning a number to each node.

fInstanciate. As described in the introduction, this function resolves the
meta variables MOTHER (↑) and SELF (↓) by using the numbers gener-
ated by numerate.

fGenDescr. After the instantiation we are ready to forget about the tree and
keep only the equations. This function accomplishes this task by traversing
the tree and picking up the equations at each node.

fSolver. By using monadic parser combinators, the most difficult points of
lfg have moved from parser to this function. In order to solve the system
of simultaneous symbolic equations, we use a tailored unification algorithm
as outlined in [Wes89]. This algorithm is equivalent to the unification algo-
rithm for feature structures, represented as direct acyclic graphs (DAGs), as
described in [All95]. This function is the topic of next section.

fValidate. The completeness and correctness checks we mentioned in the
introduction are performed by this function. It behaves as an FEstr filter.

2.2 Input files

The GramF and LexiconF data structures are provided from text files. The format
of the text files is shown in the figure 5 using EBNF format. Here we have glued
together both EBNF texts, the Gram non-terminal generates the grammar file
format, whereas the Lex generates the lexicon file format. An example is shown
in figure 6.

2.3 Interface

In order to take full advantage of the parametric design of the parser, we need
a better interface than the raw command-line. Following [MvD96] and using
available Haskell libraries for writting CGI application we developped a fully
functional front-end for the LFG engine. Its main features include:

Gram → (FRule ’;’)∗

FRule → Ident ’->’ SintFSch∗

Ident → alphanum+

SintFSch → Ident ’(’ (FSch ’;’)∗ ’)’

FSch → FExpr ’=’ FExpr

FExpr → FEstrExpr | FValue

FEstrExpr → Mother | Self | Apl

Mother → ’up’

Self → ’dn’

Apl → ’(’ FEstrExpr Ident ’)’

FValue → Pred | DeInt | DeSint

Pred → ’’’ Ident ’<’ Ident∗ ’>’ ’’’

DeInt → integer

DeSint → Ident

Lex → (LEntry ’;’)∗

LEntry → Ident Ident ’(’ (FSch ’,’)∗ ’)’

Fig. 5. EBNF description of the input files.

Grammar file
np -> n (up = dn);

s -> np ((up subj) = dn) vp (up = dn);

vp -> v (up = dn) np ((up obj) = dn)

Lexicon file
John n (pred=’JOHN <>’, pers=3, num=SING, gen=M);

Mary n (pred=’MARY <>’, num=SING, gen=F);

sees v (pred=’SEE <SUBJ OBJ>’, time=PRES, pers=3)

Fig. 6. Input files example.

multi-user. Assuming that if plugged to the Internet this kind of tool could
be useful for different people, we decided to build the front-end around a
concept of accounts protected with passwords. Each account has its own set
of (private) grammar and lexicon files.

fully CGI compliant. By this term we mean the fact that our application
make no use of fancy technologies such as JavaTM , JavaScript or even cook-

ies. This increases the usefullness of the front-end, since it is practical even
under the Lynx web browser (a text-mode only browser).

high performance. Our first approach was to use Hugs 1.4 (Haskell User’s

Gofer System) through its scripting interface, runhugs, and continue using a
Haskell interpreter. However, the lack of file functions and some performance
problems compeled us to a compiled solution. We ended up using the Glasgow

Haskell Compiler, ghc version 2.10 under Linux.

Due to restrictions of space, we do not include any more details about the
interface. The interested reader may find them in [Dub98]. The interface can be
viewed on-line in

http : //hal.famaf.unc.edu.ar/ ∼ pablod/lfg/

.

3 The unifier

As was previously stated, this algorithm follows [Wes89]. It can be described as
follows:

1. All the equations are rewritten to some of the following canonical forms:

fi = fj (fi A) = B (fi A) = fj (1)

Note that any other equations, either of the form ((fi A)B) = C or ((fi A)B) =
fj , can be translated to this form by the introduction of auxiliary variables.

2. Among the equations in canonical form, we distinguish two types: (Type 1)
(fi A) = B and (fi A) = fj and (Type 2) fi = fj .

3. A working data structure FTable is built (see 3.1 for an explanation of the
FTable data structure).

4. Using the FTable the information of the equations of Type 1 is introduced
in the table.

5. Now the equations of Type 2 are taken into account. Here we produce the
merge (the merging process is a kind of unification process, it is explained
in 3.2) of the two f-structures as the result of the operation. If no merging
is possible, we are in front of a non-grammatical sentence.

3.1 The table

This data structure is the functional language equivalent to an array of pointers
to f-structures. The idea is to have all the f-structures indexed by their names
(and alias), up to one level. That means that if one has an f-structure f5 which
has a line with key SUBJ and has as value another f-structure, say f9, then in
the FTable you will have an entry for f5, another entry for f9 and a SUBJ ’s
line in the f5’s entry containing a pointer to f9. A graphical representation of
the FTable can be seen on figure 7.

1,5,6
2

6

6

6

4

... ...
PRED ‘JOHN’
NUM SING

PERS 3
... ...

3

7

7

7

5

2,3
2

6

6

4

... ...
A B

OBJ VFpointer

... ...

3

7

7

5
-

... ...

Fig. 7. FTable.

3.2 Merging

The merging process is a kind of unification that takes two variables as param-
eters and unifies them according to the following algorithm:

The merge of two instances of the same atomic name consists of that atomic
name. Atomic names which are not identical do not merge. Semantic forms
(flanked by ‘...’) never merge. To achieve the merge of two f-structures —let us
call them fm and fn— we select one of these f-structures, say fm, and for each
attribute a in fm, we attempt to find an instance of a in fn. Let us call the value
associated with a in fm v. If a does not occur in fn, then we add the attribute
a and the value v to fn. Contrarily, if a is already present in fn, and its value
is v′, then the merge of v and v′ becomes the new value of a in fn. If all of the
subsidiary mergers are successful, then the modified version of fn represents the
merge of fm and fn.

3.3 Pseudo-code

The algorithm can be sketched as the following functional pseudo-code:

fSolver :: FDescr -> FTable

fSolver descr =

(fSolver2 descr1) .

(fSolver1 descr1) emptyTable

where

descr’ = cleanUpDescr descr

(descr1, descr2) = splitEquations descr’

(2)

The solver for the Type 1 equations:

fSolver1 :: FDescr -> FTable -> FTable

fSolver1 [] table = table

fSolver1 ((EQUALS e1 e2):rest) table

| (isOfTheFormF A e1) & & (isOfTheFormV e2) =

let (f,a) = getF A e1

v = getV e2 in

(fSolver1 rest) . (add f (a,v)) table

| (isOfTheFormF A e1) && (isOfTheFormF e2) =

let (f,a) = getF A e1

f’ = getF e2 in

(fSolver1 rest) . (add f (a,f’)) table

(3)

The solver for the Type 2 equations:

fSolver2 :: FDescr -> FTable -> FTable

fSolver2 [] table = table

fSolver2 ((EQUALS e1 e2):rest) table

let f1 = getF e1

f2 = getF e2 in

(fSolver2 rest) . (merge f1 f2) table

(4)

The previous codes are oversimplified in several ways: for example, all the
exception handling is done using the Maybe monad included in Haskell [PH+96].
The code for the merge and add functions is not included because it is too
dependent of the data-structures we have used to represent the different data
types.

In order to simplify our description we have included an informal description
of both functions:

add This function takes an f-structure pointer, a new line and a table and
returns the table which results from adding that line to the f-structure re-
ferred by the pointer. Special care should be taken regarding the creation of
new f-structures (if the pointer is not defined in the table). The consistency
of the table is maintained by making a merge if the line was already present.

merge The previously discussed merging algorithm is implemented by this
function. It takes the pointer of the two f-structures supposed to get merged
together, the working table and gets back the resulting table (if any).

4 Conclusions

This tool was used to generate an Spanish LFG grammar which capturated
several characteristics of this language. In particular, it managed well to parse
adjective relative clauses, to support subjet-verb agreement in person and num-
ber, to support adjective-noun agreement both in gender and number, to enforce
verb subcategorization and to mark absent subjects (a feature not present in En-
glish but quite usual in Spanish). We had troubles with the fact that the lexer
works in a word per word fashion not allowing us to define groups of words
that plays the role of a single word, for example, an adverbial phrase. Some
restrictions imposed upon the syntax of the equations showed too restrictive
(there was no straightforward construction to capture common Spanish adjunct
constructions). For further details see the discussion in [Dub98].

4.1 Further work

This work can be extended in several ways. Besides extending the subset of the
LFG theory supported, the system could be targeted toward real use and large
scale dictionaries. We feel quite confident about the scalability of a functional lan-
guage solution (contrasting with logical programming based approaches). How-
ever, to accomplish this goal, the algorithms should be dramatically improved.
Following [Lee93] the use of monadic parser combinators could be maintained
by changing to a compiled view (the gammar and the lexicon would be no longer
parameters) and using a functional language with internal use of memoizing

functions. When large databases are used, a lexer is required. A technique for
lexer construction that suits well our work is finite state transducers as described
in [Ant90]. The unification algorithm is where our efforts are still targeted. It
seems that it can be improved and clarified in several ways.

In its present state, we have presented a tool that could be interesting for
research in linguistics. The current thread of research in LFG is extending the
expressive power of the theory. Therefore, it is our intention to extend the system
to cope with feature attributes as depicted in [Sad96], or at least constraining
equations as described in [Kap89].

Besides its extension to cope with large corpora, this parser can be the first
step in a wide range of applications involving natural language and functional
programming. Some of our ideas included using Haskell functions for the seman-
tic forms (PRED) and try to obtain executable f-structures.

To conclude, the use of lazy functional language suited perfectly the con-
struction of the tool.

References

[All95] James Allen. Natural language understanding 2nd ed. The Ben-
jamin/Cummings Publishing Company, Inc., 1995.

[Ant90] E. Antworth. Pc-kimmo: A two-level processor for morphological analysis.
Technical report, Academic Computing Department, Summer Institute of Lin-
guistics, Dallas, 1990.

[BK82] Joan Bresnan and Ronald M. Kaplan. Introduction: grammars as mental rep-
resentations of language. In Joan Bresnan, editor, The Mental Representation
of Grammatical Relations, pages xvii–lii. The MIT Press, Cambridge, MA,
1982.

[Dub98] Pablo Ariel Duboué. Desarrollo de un parser funcional para el lenguaje castel-
lano. Technical report, FaMAF, Universidad Nacional de Córdoba, Argentina,
August 1998. an electronic version is available from the author (in Spanish)
e-mail pablod@hal.famaf.unc.edu.ar.

[HM96] Graham Hutton and Erik Meijer. Monadic parser combinators. Technical
Report NOTTCS-TR-96-4, University of Nottingham, December 1996.

[Hut92] Graham Hutton. Higher-order functions for parsing. Journal of Functional
Programming, 2(3):323–343, July 1992.

[Kap89] Ronald M. Kaplan. The formal architecture of Lexical-Functional Grammar.
In Chu-Ren Huang and Keh-Jiann Chen, editors, Proceedings of the Republic
of China Computational Linguistics Conference (ROCLING II), pages 3–18,
Taipei, 1989. Academia Sinica. Reprinted in Mary Dalrymple, Ronald M.
Kaplan, John Maxwell, and Annie Zaenen, eds., Formal Issues in Lexical-
Functional Grammar, 7–27. Stanford: Center for the Study of Language and
Information. 1995.

[Lee93] René Leermakers. The Functional Treatment of Parsing. Kluwer Academic
Publishers, 1993.

[MvD96] Erik Meijer and Joost van Dijk. Perl for swine: Cgi programming in haskell. In
First Workshop on Functional Programming, Buenos Aires, Argentina, 1996.
URL http://www.cs.ruu.nl/∼joostd/cgigofer.dvi.

[PH+96] John Peterson, Kevin Hammond, et al. Report on the programming lan-
guage haskell, a non-strict purely-functional programming language, version
1.3. Technical report, Yale University, May 1996.

[Sad96] Louisa Sadler. New developments in LFG. In Keith Brown and Jim Miller,
editors, Concise Encyclopedia of Syntactic Theories. Elsevier Science, Oxford,
1996.

[Wad85] Philip Wadler. How to replace failure by a list of successes. In 2’nd In-
ternational Conference on Functional Programming Languages and Computer
Architecture, Nancy, France, September 1985. Springer-Verlag.

[Wad92] Philip Wadler. Comprehending monads. Mathematical Structures in Com-
puter Science, 2:461–493, 1992. (Special issue of selected papers from 6’th
Conference on Lisp and Functional Programming.).

[Wad95] Philip Wadler. Monads for functional programming. In J. Jeuring and E. Mei-
jer, editors, Advanced Functional Programming, volume 925 of LNCS. Springer
Verlag, 1995. (This is a revised version of [?].).

[Wes89] Michael T. Wescoat. Practical instructions for working with the formalism of
Lexical Functional Grammar. MS, Xerox PARC, 1989.

