
A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

A Battle Cry for a
System-level JVM in Debian

Pablo Duboue12

DebConf10, NYC

1pablo.duboue@gmail.com
2DrDub on #debian-java

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Outline

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Outline

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

What Are Multi-Application JVMs?

I A JVM that supports isolates is a VM which allows
running multiple applications (processes, tasks)

I Multiple programs with different classpaths and
different public static void
main(String[]) entry points.

I These different applications should not interfere with
each other.

I Running them in the same JVM should produce the
same results as in separate JVMs.

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Isolates JSR

I The API bits of a Multi-Apps JVM are defined in
JSR-121

Krzysztof Palacz and others, JSR-000121 Application
Isolation API Specification (2006)

I javax.isolate.Isolate

I http://jcp.org/aboutJava/
communityprocess/nal/jsr121/

http://jcp.org/aboutJava/communityprocess/nal/jsr121/
http://jcp.org/aboutJava/communityprocess/nal/jsr121/

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

javax.isolate.Isolate

/ / The c rea t i ng i s o l a t e
I s o l a t e i = new I s o l a t e (" org . example . App" , " t e s t ") ;
i . s t a r t () ;

/ / The newly created i s o l a t e
package org . example ;
public class App {

public s t a t i c void main (S t r i n g . . . args) {
for (i n t i = 0 ; i < args . leng th ; i ++)

System . out . p r i n t l n (args [i]) ;
}

}

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Outline

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Why Do We Want Multi-Apps JVMs?

I As Java desktop applications become more
popular...

I Imagine a chat client written in Java
I Plus a mail client written in Java
I Plus an office suite, also written in Java

I Not only just “Java” but also eclipse-based!
I And top it off by running on a netbook.

I But it does not need to stop there...
I You can be hosting a few debian DVDs torrents using

azureus (p2p)
I Having your desktop being indexed with a

lucene-based desktop search
I Doing a voice conversation using SIP-communicator

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Lots of Applications, the User Should Expect
Trouble.

I Per the MS Windows disclaimer:
I “running multiple applications will slow down your

system”

I Problem is, this is much worse than running
machine-compiled code.

I First, the code has to be recompiled multiple times
for each of the different copies

I Wasted time recompiling the same code over and
over again

I And all these multiple compiled copies have to be
kept in RAM

I Which occupies much more space than the original
jars

I As research shows compilation results in a 6-8
increase in machine code size vs. bytecode (Cramer
et al. 1997)

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

DLLs vs. Java .class

I In a sense, while each .class is the machine code
equivalent of a dynamic-load libray, after dynamic
(JIT) compilation a copy of each library is duplicated
across JVMs

I Imagine each machine code program you are
running has its own, private copy of the glibc loaded
in RAM

I Yes, Java is that bad!

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Outline

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Grzegorz Czajkowski and Laurent Daynès.

I The beauty of working on Multi-Apps JVMs is that
there has been plenty of work at research institutions

I Many of the hard problems have been ironed out
I And with OpenJDK released, there is a real JVM to

work with

I Sun Research Labs, project Barcelona:
I http:
//research.sun.com/projects/barcelona/

I Three papers worth reading:

1. Grzegorz Czajkowski, Application isolation in the
Java virtual machine (2000)

2. Grzegorz Czajkowski and Laurent Daynès,
Multitasking without Compromise: a Virtual Machine
Evolution (2001)

3. Grzegorz Czajkowski et al., Incommunicado:
Efficient Communication for Isolates (2002)

http://research.sun.com/projects/barcelona/
http://research.sun.com/projects/barcelona/

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Outline

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Some Approaches.

1. Approach-0: Custom Class-loaders.
I Throw everything into a vanilla JVM.

2. Approach-1: Bytecode Interposition.
I Throw everything into a vanilla JVM but change

static fields on-the-fly.

3. Approach-2: JVM Modification.
I Change the implementation of static fields in the JVM

plus sandboxed JNI and shared heaps.

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Approach-0: Custom Class-loaders

I Java has a means to let users map from fully
qualified class names to the in memory class or
sequence of bytecodes implementing the class.

I The different mains are loaded into the JVM and their
shared classes are cross-referenced.

I This clearly keeps one version of each class across
applications

I But it produces an unacceptable amount of
interference across them.

I Think System.setOut(...)

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Approach-0: Custom Class-loaders

I While the custom class-loaders approach seem
laughable at first, it is in wide-spread use (!)

I An application server is just that, in a sense (think
tomcat)

I The JVM strict semantics are perfect for application
isolation

I To make it work, a very strict java security manager
is in place to protect the system library classes that
produce interference

I You don’t get any benefit if you are using the same
non-system library in multiple web applications
deployed in the same application server.

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Approach-1: Bytecode Interposition.

static fieldsstatic fields

AppClass

static fields static fields

SystemClass

static fields

AppClass

static fields

AppClass

static fields

SystemClass

static fields

AppClass

static fields

SystemClass

App1 App2 App1 App2 App1 App2

(from Czajkowski ’00)

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Approach-1: Bytecode Interposition.

class Counter {
s t a t i c i n t cnt ;
s t a t i c { cn t = 7 ; }
s t a t i c void add (i n t va l) {

cn t = cnt + va l ;
}

}

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Approach-1: Bytecode Interposition.

class Counter$sFie lds { i n t cnt ; }
class Counter$aMethods {

s t a t i c Counter$sFie lds [] s f A r r =
new Counter$sFie lds [MAX_APPS] ;

s t a t i c Counter$sFie lds getSFie lds () {
i n t i d = Thread . cur rentAppId () ;
Counter$sFie lds sF ie lds ;
synchronized (Counter$aMethods . class) {

sF ie lds = s f A r r [i d] ;
i f (sF ie lds == nul l) {

sF ie lds = new Counter$sFie lds () ;
s f A r r [i d] = sF ie lds ;
Counter . h i d d e n $ i n i t i a l i z e r () ;

}
}
return sF ie lds ;

}

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Approach-1: Overheads

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Approach-1: Other Issues.

I Need special implementations for key classes in the
java library (e.g., System)

I Different bytecode interposition for architectures that
allow for the double check idiom to work well without
need for synchronization

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Approach-2: JVM Modification.

Task X’s
class
mirror
for A

A’s instance of
java.lang.Class

instance
of A

Internal shared
representation
of A

B’s constant
pool cache

Task Y’s
class
mirror
for A

A’s instance of
java.lang.Class

instance
of A

var offset
var holder

Internal shared
representation
of B

Task X’s
class
mirror
for B

B’s instance of
java.lang.Class

X Y

X

Task X Task Y

Shared
JVM
runtime

Task class
mirrors
table

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Approach-2: JNI Sandboxing.

Task X’s
class
mirror
for A

A’s instance of
java.lang.Class

instance
of A

Internal shared
representation
of A

B’s constant
pool cache

Task Y’s
class
mirror
for A

A’s instance of
java.lang.Class

instance
of A

var offset
var holder

Internal shared
representation
of B

Task X’s
class
mirror
for B

B’s instance of
java.lang.Class

X Y

X

Task X Task Y

Shared
JVM
runtime

Task class
mirrors
table

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Approach-2: Other Issues.

I Using extra heap space in a best-effort basis
I Application asks for 2Gb, but MVM is managing 6Gb

I Application temporarily receives 6Gb until other
applications load.

I Class Initialization and Class Resolution Barriers
I Bits of native code that gets compiled away after the

class is initialized
I In the MVM case, it cannot be compiled away, so it

adds to overhead.

I Few system classes still need to be modified as in
the previous approach

I These modifications do not support custom
class-loaders

I Eclipse-based applications are still on their own.

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Infrastructure Issues

I /usr/bin/java

I The best way to think about it is screen vs. bash
I Extra arguments to refer to the instance of the MVM

to launch against

I System-level (init.d)
I If we want to have a system-level started upon boot.
I Running under which user?
I Really necessary?

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Bug-Reporting Issues

I MVM bugs
I Can be tricky to debug (interference)
I Might be related more to incomplete MVM

implementations

I If we want to support a MVM we need to give some
flexibility to accept MVM-related bug reports.

I This is in the same line as other non-OpenJDK bug
reports (although worse as it pertains to multiple
applications)

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Regular JVM vs. MVM

I The MVM is a different JDK and will be managed by
update-alternatives as usual

I However, in many aspects the MVM is a focused fork
of OpenJDK

I The JNI libraries should work and most of the custom
JVM arguments.

I But application wrappers won’t detect it as “the”
OpenJDK.

I Different system libraries for different architectures
I For Approach-1, to profit from sound double check

idiom implementations.

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Supporting Multiple Architectures / JVMs

I Nine Architectures and Four JVMs.
I Implementing a MVM solution for Debian is not just

patching OpenJDK to build a i386 MVM.

I Relationship with GCJ
I Obviously, GCJ also cares about native code and

Java.

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Thinking Small

I JIT-cache
I Maybe we can gain most of the advantages of the

MVM by setting up a system global JIT-cache on disk
I Address only the reduplication of compilation
I Won’t address the memory reduplication (until

patched into an ’almost’ MVM solution)

I JNI Isolates
I This might be one of the most interesting features in

the MVM
I We can try to have this in upstream (and into Debian)

as an starting point.

A Battle Cry for a
System-level JVM

in Debian

Pablo Duboue

Summary

I Keeping multiple copies of a system library in RAM is
a solved problem for machine code libraries since the
advent of dynamic load libraries

I However, Java as we have it in Debian (and
OpenJDK) can’t do that.

I This problem has been studied (and solved) in the
research world.

I It will take effort to get this technology implemented
and integrated

I But it is doable

I Pointers? Contacts? Volunteers?
I DrDub in #debian-java / pablo.duboue@gmail.com

	Deep Questions
	What?
	Why?
	Who?

	The Deeper Question: How?
	Multiple Approaches to Multi-App JVMs

	Multi-Apps JVMs within Debian

