IBM in TREC 2006 Enterprise Track

Jennifer Chu-Carroll, Guillermo Averboch, Pablo Duboue, David Gondek, J William Murdock, John Prager
IBM T.J. Watson Research Center

Paul Hoffmann, Janyce Wiebe
University of Pittsburgh

November 17, 2006
Overview

- Scientific Foci
- Discussion Task
 - System
 - Hypotheses
 - Results
- Expert Task
 - System
 - Hypotheses
 - Results
- Conclusions
Scientific Foci

- **Investigate impact of adopting multiple problem-solving strategies**
 - High-precision vs. high-recall strategies
 - Knowledge-based vs. statistical approaches
 - Search engines employing different ranking algorithms

- **Investigate combination of structured, semi-structured, and unstructured information sources**
 - High-precision extracted structured information
 - Analysis of semi-structured texts, e.g., standards documents, e-mail signature

- **Leverage NLP technologies to enhance search performance**
 - Pro/con sentiment analysis
 - Query-based multi-document summarization
 - *ExpertIn* relation detection

- **Leverage relevant external resources**
 - FOLDOC computing dictionary
 - Google Scholar
Discussion Search Task

- **Task**: given a topic, return ranked list of e-mail messages that discuss pro/con aspects of the topic

- **Basic approach**
 - Search for topic-relevant documents
 - Analyze documents for presence of pro/con sentiments

- **Experimental foci**
 - Investigate impact of adopting multiple problem-solving strategies
 - Adopted multiple search engines for document retrieval
 - Developed and leveraged multiple pro/con sentiment analysis engines
 - Leverage NLP technologies to enhance search performance
 - Developed a rule-based sentiment analyzer based on syntactic parses
 - Developed a statistical sentiment analyzer based on POS-driven bag of words and extraction patterns
 - Leverage relevant external resources
 - Processed FOLDOC to extract acronym/expansion pairs and phrases highly associated with each term for query expansion
Discussion Search System Architecture

- Utilizes “query” and “description” from topic
- Performs query expansion
- Produces one or more abstract query representations

- Leverages multiple sentiment analyzers
- IBM Pro/Con assessor: rule-based sentence-level analyzer based on syntactic parses
- UPitt Pro/Con assessor: statistical document-level analyzer based on words and extraction patterns

- Augment hitlist with documents in the same e-mail thread as retrieved e-mails using Webber’s threading information

- Lverages multiple search engines with different query languages and ranking algorithms

Diagram:
- Query Analysis
 - Juru Query Generator
 - Lucene Query Generator
 - Indri Query Generator

- Hit List Combiner
- Thread-Based Hit List Augmenter

- Pro/Con Re-ranking
 - IBM Pro/Con Assessor
 - UPitt Pro/Con Assessor

- Combiner
Discussion Search Results

<table>
<thead>
<tr>
<th></th>
<th>MAP</th>
<th>bpref</th>
<th>p@10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>topic</td>
<td>pro/con</td>
<td>topic</td>
</tr>
<tr>
<td>JQ</td>
<td>0.2745</td>
<td>0.1654</td>
<td>0.3218</td>
</tr>
<tr>
<td>IBM06JAQ</td>
<td>0.3146</td>
<td>0.2030</td>
<td>0.3572</td>
</tr>
<tr>
<td>JILQ</td>
<td>0.3017</td>
<td>0.1762</td>
<td>0.3472</td>
</tr>
<tr>
<td>JILQD</td>
<td>0.3095</td>
<td>0.1835</td>
<td>0.3559</td>
</tr>
<tr>
<td>IBM06JILAPQD</td>
<td>0.3310</td>
<td>0.2021</td>
<td>0.3709</td>
</tr>
</tbody>
</table>

Summary of results

- **Multiple problem-solving strategies**
 - Employing multiple document retrieval engines improved MAP by 9.9%
 - Multiple pro/con analyzers yielded marginal improvement

- **Leverage NLP technologies**
 - Single pro/con analyzer improved pro/con MAP score by 22.7%
 - IBM06JAQ: one of three runs with greater rank increase from topic MAP to pro/con MAP

- **External resources**
 - Query expansion using description field (with FOLDOC) yielded marginal improvement

- **Document search only**
- **Three document search engines**
- **Query and description**
Expert Search Task

- **Task**: given a topic, return a ranked list of experts on that topic

- **Basic approach**
 - Adopt multiple expert finding strategies and combine results
 - Re-rank/Filter experts/support documents

- **Experimental foci**
 - Investigate impact of adopting multiple problem-solving strategies
 - Adopted multiple agents for expert finding
 - Investigate combination of structured, semi-structured, and unstructured information sources
 - Utilized unstructured information for pseudo-document generation
 - Analyzed semi-structured standards documents for expert identification
 - Extracted high-precision structured information using relation recognizers
 - Leverage NLP technologies to enhance search performance
 - Utilized MEAD [Radev et al., 2003], a query-based multi-document summarization system for pseudo-document generation
 - Developed ExpertIn relation recognizer for identifying expert-topic associations
 - Leverage relevant external resources
 - Queried Google Scholar for authors of scholarly publications on topic
Expert Search System Architecture

- **Query Analyzer**

 - **Pseudo Doc Agt**
 - Lucene
 - Vector
 - Indri

 - Helix Document Filter
 - 5w
 - 50w
 - 20t
 - 100t
 - summ
 - full

- **Hit List Combiner**

 - Heuristic-Based Expert Post-Processor
 - Heuristic-Based Support Document Post-Processor

- **Heuristic-Based Expert Post-Processor**

 - Employs multiple expert finding strategies
 - Some targets high precision and others high recall

- **Heuristic-Based Support Document Post-Processor**

 - Affinity-based expert reranker
 - Acknowledgements document filter
 - Duplicate document filter
 - EKDB document reranker

© 2006 IBM Corporation – All Rights Reserved –
Expert Search Agent Details

- **Pseudo-document agents**: generate one pseudo-document per expert to capture their expertise [Fu et al, 2006]
 - Windowing approach: n sentences before/after each mention of a candidate expert
 - Top sentence approach: first n sentences in documents where candidate appears
 - Whole document approach: all documents in which a candidate appears
 - Summarization approach: summarization generated for each candidate by MEAD

- **Expert MetaData agent**
 - Identifies standards documents and associates authors/editors with topic

- **EKDB agent**
 - Determines expertise from extracted structured data based on ExpertIn relation and e-mail author/subject pairs

- **Google Scholar agent**
 - Extracts authors of papers on given topic, and filter for experts on candidate list
Expert Search Results

<table>
<thead>
<tr>
<th></th>
<th># ques</th>
<th>MAP</th>
<th>bpref</th>
<th>p@5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>answered</td>
<td>expert</td>
<td>support</td>
<td>expert</td>
</tr>
<tr>
<td>pseudo lucene</td>
<td>49</td>
<td>0.3970</td>
<td>0.2490</td>
<td>0.4039</td>
</tr>
<tr>
<td>pseudo vector</td>
<td>49</td>
<td>0.4122</td>
<td>0.2558</td>
<td>0.4144</td>
</tr>
<tr>
<td>pseudo indri</td>
<td>49</td>
<td>0.3997</td>
<td>0.2267</td>
<td>0.4118</td>
</tr>
<tr>
<td>metadata</td>
<td>19</td>
<td>0.2026</td>
<td>0.1107</td>
<td>0.2013</td>
</tr>
<tr>
<td>ekdb</td>
<td>28</td>
<td>0.0735</td>
<td>0.0105</td>
<td>0.0793</td>
</tr>
<tr>
<td>google</td>
<td>27</td>
<td>0.0500</td>
<td>--</td>
<td>0.0622</td>
</tr>
<tr>
<td>IBM06QO</td>
<td>49</td>
<td>0.4536</td>
<td>0.2863</td>
<td>0.4402</td>
</tr>
</tbody>
</table>

Summary of results

- Effective combination of multiple strategies leveraging structured, semi-structured, and unstructured information yielded 11.9% improvement in support MAP
- NLP technologies
 - Current use of summarization system did not yield improvement over other approaches
 - *ExpertIn* relation detection was key contributor in EKDB agent performance
- External resource Google Scholar resulted in minimal improvement
Conclusions

- **Our adoption of multiple strategies for problem-solving was highly effective**
 - 9.9% MAP improvement in discussion task with three search engines vs. one
 - 11.9% MAP improvement in expert task with six agents vs. best performing agent
 - Multiple pseudo-document generation strategies also improved upon a single-strategy approach

- **Select NLP technologies had high impact**
 - Pro/Con sentiment analyzers increased pro/con MAP score by 22.7%
 - *ExpertIn* relation detector enabled of extraction of high quality data for EKDB agent
 - Summarization as currently used did not result in performance improvement

- **External resources utilized in our experiments yielded minimal improvement**